doi:10.6048/j.issn.1001-4330.2024.05.011
摘" 要:【目的】研究不同地面覆盖方式对酿酒葡萄品种马瑟兰果实品质的影响。
【方法】以5年生SO4砧木嫁接的酿酒葡萄品种马瑟兰为试材,以清耕栽培为对照,研究行间铺设园艺地布(BGM)和生草栽培(GM)2种地面覆盖方式对马瑟兰果实品质的影响。
【结果】园艺地布和生草栽培均可以提高葡萄果穗质量、果粒质量和果粒纵横径。园艺地布的葡萄萎蔫率最高为5.45%,出汁率最低为32.89%,生草栽培未出现葡萄萎蔫现象,其出汁率显著高于对照。园艺地布降低了葡萄果实可溶性固形物和还原糖含量,生草栽培提高了葡萄可溶性固形物和还原糖含量。园艺地布和生草栽培均可降低葡萄果实可滴定酸和pH值,提高糖酸比。园艺地布和生草均显著提高了葡萄果皮总酚、类黄酮、黄烷醇和单宁含量,虽然园艺地布和生草改变了葡萄花色苷含量,但和对照间均无差异性。2种地面覆盖方式可提高葡萄果皮FRAP和ABTS的抗氧化活性,但显著降低了DPPH的抗氧化活性。26个葡萄品质指标之间存在不同程度的极显著获显著性正相关或负相关,相关系数介于-1.00~+1.00。
【结论】在新疆吐鲁番市可选择生草栽培作为酿酒葡萄优质栽培新模式。
关键词:酿酒葡萄;地面覆盖;果实品质;抗氧化活性
中图分类号:S663.1""" 文献标志码:A""" 文章编号:1001-4330(2024)05-1131-09
收稿日期(Received):
2023-10-14
基金项目:
新疆维吾尔自治区公益性科研院所基本科研业务费专项资金子项目(KY2022107);新疆维吾尔自治区少数民族特培项目(2022D03033);吐鲁番市重点研发项目(2021006);现代农业产业技术体系专项资金(CARS-29-26)
作者简介:
户金鸽(1982-),女,新疆人,硕士,副研究员,研究方向为葡萄栽培,(E-mail) hujinge2007@sina.com
0" 引 言
【研究意义】地面覆盖技术具有改良土壤结构、蓄水保墒、调节微域生态环境等功能[1]。地布覆盖可以起到高温时降温,低温时保温,稳定土壤热环境及提高土壤含水量的作用[2],改变果园耗水结构[3],有利于提高土壤酶活性和有益菌的种类和数量[4],地布覆盖可以提高平均单果质量、可溶性固形物含量[2]、VC含量、可溶性糖含量[5],降低可滴定酸含量,提高果实固酸比[6]和显著的增产作用[1]。
果园生草也称生物覆盖[7],是普遍运用的果园土壤管理模式[8]。【前人研究进展】生草能够改善土壤物理性状,提升土壤有机质含量、土壤酶活性和微生物数量[8-10],但当年会降低土壤脲酶和碱性磷酸酶的活性[11];生草在夏季有降温效应,秋季有增温效应,能降低土壤温度[12],调节果际、根际微气候[13]。生草显著提高果实横径、可溶性固形物和VC含量,降低可滴定酸含量[12],且降低果实硬度、提高单果重、果实品质和产量[6,10]。生草对果形指数和VC含量变化影响不明显[14]。除此之外,生草可以改变赤霞珠葡萄果实三大香气物质合成中的次级代谢产物,提高果实香气物质含量[8,13]。【本研究切入点】马瑟兰葡萄品种是以赤霞珠为母本,歌海娜为父本杂交选育而成的红色酿酒葡萄品种[15,16]。该品种适应性强,抗病性强[17],目前我国酿酒葡萄马瑟兰总种植面积约267 hm2,新疆吐鲁番市马瑟兰品种种植面积约20 hm2(300亩),
马瑟兰葡萄7月10日左右开始转色,8月15日左右成熟,果实着色期间,正值一年中的高温季节,造成果实萎蔫,品质不佳等问题。需研究不同地面覆盖方式对酿酒葡萄马瑟兰葡萄果实品质的影响。【拟解决的关键问题】选择2018年SO4砧木嫁接的马瑟兰葡萄为试材,研究园艺地布和生草栽培对果实品质的影响,为新疆吐鲁番市马瑟兰葡萄的高效优质栽培提供理论依据。
1" 材料与方法
1.1" 材 料
试验设在新疆吐鲁番市鄯善县园艺场(42°91′ N,90°30′ E),以2018年春季SO4砧木嫁接的酿酒葡萄品种马瑟兰为试材,1.0 m×2.5 m,厂形栽培,结果高度60 cm。土壤为沙砾土,有机质含量18.20 g/kg,全盐1.07 g/kg,全氮1.06 g/kg,全磷0.92 g/kg,全钾1.61 g/kg,pH值8.18,灌溉方式为微喷。
1.2" 方 法
1.2.1" 试验设计
葡萄花后坐果初期设田间自然生草(GM)、铺设园艺地布(BGM)处理,清耕栽培为对照(CK)。果实成熟时采收,测定果穗性状和果实品质,用镊子剥取5 g果皮后立即用锡纸包裹置于液氮中,测定果皮花色苷含量、总酚含量、类黄酮含量、黄烷醇含量、单宁含量及果皮抗氧化活性(DPPH、ABTS和FRAP)。
1.2.2" 测定指标
1.2.2.1" 果穗性状
依据葡萄种质资源规范和数据标准进行描述并赋值;用电子天平称取果穗质量(g)。
1.2.2.2" 果实品质
留2 mm的果梗将果实剪下,用于测定果实基本品质。
葡萄果粒质量采用电子天平称取10粒果粒质量(g),取平均值,每处理重复5次;果粒纵径横径采用游标卡尺测量(mm);果皮色差采用色差仪测定,随机选取20粒果实用色差仪测定果皮赤道处的L、a、b值,计算C值。根据Hunter Lab表色系统,其中L值表示系统的亮度,L越大,样品表面越亮。a表示系统的红绿值,-a为绿,a越小样品越绿,+a为红,a越大,样品越红;b表示系统的黄蓝值,-b为蓝,值越小样品越蓝,+b为黄,值越大,样品越黄;C表示样品的彩度,值越大,所测的颜色越纯。C=a2+b2,h0=arctangent(b/a),CIRG=(180-h0)/(L+C),CIRGlt;2为黄绿色,2lt;CIRGlt;4为粉红色,4lt;CIRGlt;5为红色,5lt; CIRGlt;6为深红色,CIRGgt;6为紫黑色[18]。
随机选取25粒葡萄果实挤出果汁用于测定果实可溶性固形物(°Brix)、可滴定酸(%)、pH值和还原糖,每处理重复3次。可溶性固形物用手持测糖仪测定;还原糖采用3,5-二硝基水杨酸法测定[19],采用酸碱滴定法测定可滴定酸,结果用酒石酸表示[19];采用pH计测定pH值。
1.2.2.3" 果皮品质
葡萄果皮酿酒品质:果皮花色苷采用pH值色差法测定[20],总酚采用福林酚试剂法测定[21],类黄酮、黄烷醇、单宁参见文献方法[22-24]。
葡萄果皮抗氧化活性:Brand-Williams方法[25]测定DPPH,Re,Pellegrini等方法[26]测定ABTS,采用葡萄果皮对铁离子的还原能力采用文献[27]测定FRAP。
1.3" 数据处理
3次平行试验,采用Microsoft Excel 2010进行数据处理,用OriginLab OriginPro 2019b进行差异性分析(Duncan,Plt;0.05),数据表示为“平均值±标准差”。将3种地面覆盖方式下葡萄果实和果皮作为评价单元,以所有品质指标为变量,原始数据标准化后采用OriginLab OriginPro 2019b进行皮尔逊相关性和主成分分析。根据提取的特征值,以累计贡献率大于85%的准则提取主成分。
2" 结果与分析
2.1" 不同地面覆盖方式对酿酒葡萄马瑟兰果实外观及内在品质的影响
研究表明,园艺地布和生草栽培提高葡萄果穗质量,分别比对照提高了16.38%和57.98%,生草栽培的葡萄果穗质量、果穗紧密度和对照间存在显著差异,园艺地布和对照无差异。园艺地布的葡萄果穗萎蔫率显著高于对照,葡萄果实的出汁率相应的低于对照,但和对照间无差异。生草栽培的葡萄果实未出现萎蔫,果实出汁率显著高于对照为38.29%。
园艺地布和生草栽培的葡萄果粒质量高于对照,分别比对照提高了1.97%和28.67%,生草栽培的果粒质量和对照间存在显著差异。葡萄果粒纵径和横径均显著高于对照,果粒纵径和横径分别比对照提高了12.72%和19.90%、11.89%和15.72%。地面覆盖方式对果形指数影响不大。
生草栽培的葡萄果实可溶性固形物含量最高为24.47,其次是对照24.20,园艺地布的葡萄可溶性固形物含量最低为23.73,果实的可溶性糖含量表现出同样的趋势。园艺地布的葡萄可溶性固形物含量和对照间无差异,而还原糖含量却显著低于对照。两种地面覆盖方式降低了果实可滴定酸,提高了果实糖酸比,园艺地布和对照间的可滴定酸存在显著差异,生草栽培的果实糖酸比显著高于对照,较对照提高了5.56%。2种地面覆盖方式下果实pH值均显著降低。
园艺地布对L值、a、b值和C值影响不大,虽有不同程度的增加或降低,但和对照间无差异性;生草栽培显著降低了b和C值,虽然降低了a值、提高了L值,但和对照间均无差异性。园艺地布的CIRG显著高于对照,园艺地布的CIRG值为6.43,比对照提高了74.94%,生草栽培虽然提高了CIRG但与对照间无差异。表1
2.2" 不同地面覆盖方式对酿酒葡萄马瑟兰果皮品质及抗氧化活性的影响
研究表明,园艺地布的葡萄果皮花色苷含量较对照提高了4.97%,生草栽培的葡萄果皮花色苷含量较对照减少了10.30%,均于对照间无差异。两种地面覆盖方式均提高了葡萄果皮总酚、类黄酮、黄烷醇和单宁含量,且园艺地布的葡萄果皮总酚、类黄酮、黄烷醇和单宁含量最高,分别比对照提高了203.50%、366.07%、108.36%和50.08%,均显著高于对照;生草栽培的葡萄果皮总酚、类黄酮、黄烷醇和单宁含量显著低于园艺地布覆盖栽培但显著高于对照,分别比对照提高了71.79%、117.17%、21.92%和25.25%。
园艺地布覆盖和生草栽培提高了葡萄FRAP和ABTS活性,其中园艺地布的FRAP和ABTS活性分别比对照提高了157.49和81.81%,均显著高于对照;生草栽培的FRAP和ABTS活性分别比对照提高了41.51%和6.74%,园艺地布和对照间存在显著差异,生草栽培和对照间无差异。园艺地布和生草栽培均显著降低葡萄DPPH活性,分别比对照降低了5.16%和2.35%。表2
2.3" 葡萄果实性状的相关性比较
研究表明,26个性状之间存在不同程度的极显著获显著性正相关或负相关,相关系数介于-1.00~+1.00。
葡萄果粒质量和果粒纵径、横径呈显著正相关,相关系数为0.79;与可溶性固形物和还原糖呈显著正相关,相关系数为0.70;与还原糖和糖酸比显著正相关,相关系数为0.72。总酚和类黄酮、黄烷醇、单宁之间均存在极显著正相关,相关系数分别为1.00、0.98、0.98,类黄酮和黄烷醇、单宁存在极显著相关,相关系数分别为0.99、0.98,黄烷醇和单宁之间极显著正相关,相关系数为0.94。ABTS和FRAP间抗氧化活性存在极显著正相关,相关系数为0.97,DPPH和FRAP、ABTS均存在极显著负相关,相关系数分别为0.97和0.89,FRAP和ABTS与总酚、类黄酮、黄烷醇和单宁均存在极显著正相关,相关系数介于0.88~0.99。
可滴定酸和CIRG呈显著负相关,相关系数为-0.73,可滴定酸和总酚、类黄酮、黄烷醇、单宁呈显著负相关,相关系数分别为-0.74、-0.73、-0.71、-0.73。DPPH和总酚、类黄酮、黄烷醇、单宁呈极显著负相关,相关系数分别为-0.95、-0.96、-0.95、-0.97。图1
2.4" 葡萄果实性状的主成分
研究表明,提取特征值大于1的3个主成分,贡献率分别为46.13%、38.05%、7.66%,累计贡献率91.84%,可以代表全部指标的大部分信息。
第一主成分的特征值为11.99,贡献率为46.13%,萎蔫率的载荷值最大,为0.287,ABTS和黄烷醇含量较高,载荷值分别为0.271和0.260,FRAP、类黄酮、总酚、CIRG和单宁载荷值分别为0.249、0.242、0.236、0.204,代表了果皮酿酒品质和抗氧化活性。
第二主成分的特征值为9.89,贡献率为38.05%,果粒纵径的载荷最大,为0.311,果穗质量、b值载荷值较大,载荷值为0.276、0.275,糖酸比、果粒质量、出汁率、紧密度、还原糖的载荷值分别为0.207、0.225、0.204、0.185、0.102,代表了果实的基本品质。
第三主成分的特征值为1.99,贡献率为7.66%,L的载荷值最大为0.631,可滴定酸的载荷值较大为0.318。代表了果实基本品质。图2
2.5" 不同地面覆盖方式下葡萄果实品质的综合评价
研究表明,园艺地布覆盖和生草栽培的综合得分均高于对照,而园艺地布覆盖栽培的综合得分最高,园艺地布覆盖栽培下果实品质较好。表3
3" 讨 论
3.1
在新疆吐鲁番市马瑟兰葡萄成熟时恰值高温季节,加之空气湿度低,造成果实萎蔫,严重影响了优质葡萄酒的酿造。颜晓捷等[28]、刘蝴蝶等[29]、李祥彬等[30]、王孝娣等[31]研究发现,生草栽培提高了葡萄果粒纵横径和果粒质量,研究也得出了同样的结果。园艺地布覆盖也增加了果粒质量,与杨熠路等[3]研究结果一致,而韩轩轩等[32]认为地布覆盖下葡萄平均单果质量较对照降低。
园艺地布覆盖的葡萄可溶性固形物和可滴定酸含量均低于对照,韩轩轩等[32]研究认为地布覆盖可以提高果实可溶性固形物、降低酸含量,研究证实地布覆盖可以降低酸含量。刘思等[33]、刘博等[34]、陈久红等[12]、管雪强等[35]分析认为生草栽培可以提高果实可溶性固形物、还原糖含量和总酸含量。而研究证实生草栽培下葡萄果实可溶性固形物和还原糖含量均高于对照;而王锐等[8]也认为生草栽培可以提高酸含量,但试验研究发现生草不但没有提高果实酸含量,反而降低了酸含量。此外在2021年鲜食葡萄新郁上也发现生草栽培降低了果实酸含量[36],李宏建等[37]、王波波[38]、段卫朋等[13]研究也发现园艺地布降低了可滴定酸含量推迟了果实成熟。管雪强等[35]研究还发现,生草可以维持较低的pH值,在一定程度上对果实可溶性固形物积累形成负面影响,该研究也证实了园艺地布覆盖和生草栽培明显降低了果实pH值。
3.2
葡萄园覆盖可以增加葡萄果实的总酚物质[39]。王锐等[8]、刘思等[33]、侯婷等[40]、王波波等[41]、卢浩成等[42]研究发现,生草覆盖可以增加花色苷含量,研究证实园艺地布可以增加马瑟兰葡萄果皮花色苷含量,虽然生草栽培降低了花色苷含量,但和对照间无差异。园艺地布覆盖提高果皮花色苷浓度原因是行间铺设园艺地布后提高了土壤温度,对葡萄根系产生胁迫,有利于果皮花色苷的合成,并抑制其分解。
段鑫垚[43]发现,2019年各覆盖处理均提高了葡萄果皮中的类黄酮含量,降低了黄烷醇含量,而2020年发现覆盖提高了果皮类黄酮和黄烷醇含量。庞群虎[44]认为,生草可不同程度提高总酚含量,降低了单宁含量,惠竹梅等[45],Monteiro等[46],Spay等[47]均认为,行间生草促使总酚含量提高。刘玉娟[48]研究发现,行内生草降低了酿酒葡萄果实总酚和单宁含,行间种植马齿苋可降低果实黄酮醇类物质浓度[42]。研究发现,园艺地布覆盖和生草栽培均提高了果皮总酚、类黄酮、黄烷醇和单宁含量,且园艺地布覆盖地面下各指标含量高于生草栽培,与前人的研究结果不完全一致。生草提高多酚化合物的原因是葡萄园生草由于适度的水分和氮肥竞争,从而控制植株的生长势,调节营养生长和生殖生长,改善叶幕微气候,从而提高了葡萄总酚含量[49]。
果蔬的抗氧化能力受总酚和总类黄酮的影响较大,特别是总酚含量与其抗氧化能力呈显著正相关[50]。DPPH的清除能力和总酚、类黄酮、花色苷、黄酮醇呈极显著正相关,总酚和总黄酮、黄酮醇极显著正相关[51],FRAP和ABTS和总酚、类黄酮、黄烷醇、单宁均呈极显著正相关。
4" 结 论
4.1
园艺地布和生草栽培可促进葡萄果穗质量、果粒质量、果粒纵径横径和果穗紧密度的增加,且生草降低可显著降低果实萎蔫率,提高果实出汁率。园艺地布降低果实可溶性固形物和还原糖含量,生草提高了果实可溶性固形物和还原糖含量,2种地面覆盖栽培方式下葡萄可溶性固形物均和对照间无差异。
4.2
生草覆盖栽培均降低了葡萄果皮花色苷含量,园艺地布提高果皮花色苷含量,但和对照间存无差异,生草栽培和对照间无差异。在西北干旱区可选择生草栽培作为酿酒葡萄优质栽培新模式。2种地面覆盖方式均提高了果皮总酚、类黄酮、黄烷醇、单宁含量。2种地面覆盖方式提高了葡萄FRAP和ABTS的活性,但降低了DPPH活性。
4.3" 26个性状之间存在不同程度的极显著或显著性正相关或负相关,相关系数介于-1.00~ +1.00。前3个主成分的累计贡献率达到了91.84%,涵盖了果皮酿酒品质、抗氧化活性和果实基本品质,在新疆吐鲁番市可选择生草栽培模式。
参考文献(References)
[1]
赵德英. 梨园树盘覆盖的土壤生态效应及树体生理响应研究[D]. 北京:中国农业科学院," 2013.
ZHAO Deying. Study on the soil ecological effects and physiological response in different groundcover pear tree [D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.
[2] 李寒, 郝赛鹏, 郭素萍, 等. 地布覆盖对苹果园土壤水热环境及果实品质的影响[J]. 林业科技通讯, 2019, (10): 44-47.
LI Han, HAO Saipeng, GUO Suping, et al. Effects of ground cloth mulching on soil water and heat environment and fruit quality in apple orchard[J]. Forest Science and Technology, 2019, (10): 44-47.
[3] 杨熠路, 胡枫, 倪照君, 等. 园艺地布覆盖对桃园土壤和桃果实品质的影响[J]. 中国果树, 2021, (8): 24-30.
YANG Yilu, HU Feng, NI Zhaojun, et al. Effects of black ground fabric mulching on fruit quality and soil in peach orchard[J]. China Fruits," 2021, (8): 24-30.
[4] 郑悦, 李会科, 张泰然, 等. 园艺地布微垄覆盖对渭北旱地矮化苹果根域土壤水分的影响[J]. 西北农业学报, 2019, 28(4): 631-640.
ZHENG Yue, LI Huike, ZHANG Tairan, et al. Effects of black ground fabric micro-ridge mulching on root zone soil moisture of dwarf apple in Weibei dryland, China[J]. Acta Agriculturae Boreali-occidentalis Sinica," 2019, 28(4): 631-640.
[5] 赵思明, 曹兵, 万仲武, 等. 园艺地布和秸秆覆盖对枣园土壤温湿度与枣树生长的影响[J]. 核农学报, 2021, 35(5): 1188-1195.
ZHAO Siming, CAO Bing, WAN Zhongwu, et al. Effect of garden cloth covering and straw mulching on soil temperature, moisture and jujube growth in jujube orchard[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(5): 1188-1195.
[6] 刘伟, 罗玲, 钟奇, 等. 生草和地布覆盖对攀枝花地区芒果园土壤性质及果实品质的影响[J]. 应用与环境生物学报, 2021, 27(2): 261-270.
LIU Wei, LUO Ling, ZHONG Qi, et al. Effects of grass planting and ground fabric mulching on soil properties and fruit quality in mango orchards in Panzhihua, China[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(2): 261-270.
[7] 姚胜蕊, 薛炳烨. 果园地面管理研究进展[J]. 山东农业大学学报(自然科学版), 1999, 30(2): 186-192.
YAO Shengrui, XUE Bingye. A review of orchard floor management[J]. Journal of Shandong Agricultural University (Natural Science Edition), 1999, 30(2): 186-192.
[8] 王锐, 闫鹏科, 马婷慧, 等. 行内生草对土壤微环境和酿酒葡萄品质的影响[J]. 干旱地区农业研究, 2020, 38(3): 195-203.
WANG Rui, YAN Pengke, MA Tinghui, et al. Effects of intra-row planted grass on soil microenvironment and wine grape quality[J]. Agricultural Research in the Arid Areas, 2020, 38(3): 195-203.
[9] 孙计平, 张玉星, 吴照辉, 等. 生草对梨园土壤物理特性的影响[J]. 水土保持学报, 2015, 29(5): 194-199.
SUN Jiping, ZHANG Yuxing, WU Zhaohui, et al. Effect of planting herbage on soil physical properties of pear orchard[J]. Journal of Soil and Water Conservation, 2015, 29(5): 194-199.
[10] 霍姗姗. 生草对梨园生态环境及果实品质的影响[D]. 邯郸: 河北工程大学, 2018.
HUO Shanshan. Effects of Grass Planting on Ecological Environment and Fruit Quality of Pear Orchard[D].Handan: Hebei University of Engineering, 2018.
[11] 庞群虎, 宋丽华, 王竞, 等. 生草当年对枣园土壤性状及红枣品质的影响[J]. 西北林学院学报, 2019, 34(1): 124-129.
PANG Qunhu, SONG Lihua, WANG Jing, et al. Effects of growing grasses in jujube orchards on soil properties and fruit quality[J]. Journal of Northwest Forestry University," 2019, 34(1): 124-129.
[12] 陈久红, 马建江, 李永丰, 等. 行间生草对库尔勒香梨果园小气候、光合特性及果实品质的影响[J]. 北方园艺, 2019(22): 49-59.
CHEN Jiuhong, MA Jianjiang, LI Yongfeng, et al. Effects of herbage on ecological environment and photosynthetic characteristics fruits quality of korla fragrant pear[J]. Northern Horticulture, 2019(22): 49-59.
[13] 段卫朋. 行内生草、覆布对赤霞珠果实及其葡萄酒香气品质的影响[D]. 兰州:甘肃农业大学, 2018.
DUAN Weipeng. Effects of grass and film cover on aroma quality of Cabernet Sauvignon grape and wine [D]. Lanzhou: Gansu Agricultural University, 2018.
[14] 史进.自然生草对长富2号果园生态环境和果实品质的影响[D].乌鲁木齐:新疆农业大学, 2016.
SHI Jin. Effects of nature grass on ecological environment and fruit quality on Malus pumila Nagafu 2 orchard [D]. Urumqi: Xinjiang Agricultural University, 2016.
[15] Alcalde-Eon C, Boido E, Carrau F, et al. Pigment profiles in monovarietal wines produced in Uruguay[J]. American Journal of Enology and Viticulture, 2006, 57(4): 449-459.
[16] Li M M, Guo Z J, Jia N, et al. Evaluation of eight rootstocks on the growth and berry quality of Marselan grapevines[J]. Scientia Horticulturae, 2019, 248: 58-61.
[17] Kym A. JANCIS ROBINSON, JULIA HARDING and JOS VOUILLAMOZ: wine grapes: a complete guide to 1, 368 vine varieties, including their origins and flavours. ecco (harper collins), New York, October 2012, xxxvii + 1242 pp., ISBN 978-0062206367 (hardback), US$175[J]. Journal of Wine Economics, 2013, 8(1): 106-109.
[18] Carreo J, Martínez A, Almela L, et al. Proposal of an index for the objective evaluation of the colour of red table grapes[J]." Food Research International, 1995, 28(4): 373-377.
[19] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
GAO Junfeng. Experimental guidance for plant physiology[M]. Beijing: Higher Education Press, 2006.
[20] Stojanovic J, Silva J L. Influence of osmotic concentration, continuous high frequency ultrasound and dehydration on antioxidants, colour and chemical properties of rabbiteye blueberries[J]. Food Chemistry, 2007, 101(3): 898-906.
[21] Tian S, Wang Y, Du G, et al. Changes in contents and antioxidant activity of phenolic compounds during gibberellin-induced development in Vitis vinifera L. Muscat[J]. Acta Physiol Plant, 2011, 33:2467-2475.
[22] Wolfe K, Wu X Z, Liu R H. Antioxidant activity of apple peels[J]. Journal of Agricultural and Food Chemistry, 2003, 51(3): 609-614.
[23] Li Y G, Tanner G, Larkin P. The DMACA–HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes[J]. Journal of the Science of Food and Agriculture, 1996, 70(1): 89-101.
[24] Mercurio M D, Dambergs R G, Herderich M J, et al. High throughout analysis of red wine and grape phenolics-adaptation and validation of methyl cellulose precipitable tannin assay and modified somers color assay to a rapid 96 well plate format[J]. Journal of Agricultural and Food Chemistry, 2007, 55(12): 4651-5657.
[25] Brand-Williams W, Cuvelier M, Berset C. Use of a free radical method to evaluate antioxidant activity[J]. LWT - Food Science and Technology, 1995, 28(1): 25-30.
[26] Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay[J]. Free Radical Biology amp; Medicine, 1999, 26(9/10): 1231-1237.
[27] Benzie I F F, Strain J J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay[J]. Analytical Biochemistry, 1996, 239(1): 70-76.
[28] 颜晓捷, 黄坚钦, 邱智敏, 等. 生草栽培对杨梅果园土壤理化性质和果实品质的影响[J]. 浙江农林大学学报, 2011, 28(6): 850-854.
YAN Xiaojie, HUANG Jianqin, QIU Zhimin, et al. Soil physical and chemical properties and fruit quality with grass cover in a Myrica rubra orchard[J]. Journal of Zhejiang A amp; F University, 2011, 28(6): 850-854.
[29] 刘蝴蝶, 郝淑英, 曹琴, 等. 生草覆盖对果园土壤养分、果实产量及品质的影响[J].土壤通报,2003,34(3):184-186.
LIU Hudie, HAO Shuying, CAO Qin, et al. Effect of grass cover on soil nutrient and yield and quality of apple [J]. Chinese Journal of Soil Science, 2003, 34(3): 184-186.
[30] 李祥彬. 生草对蜜柚园生态环境及果树生长发育的影响[D]. 福州: 福建农林大学, 2017.
LI Xiangbin. The Influences of Cover Cropping on the Eco-environments in Pummelo Orchard and the Growth amp; Development of Fruit Trees[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017.
[31] 王孝娣, 史祥宾, 刘凤之, 等. 不同草种和生草方式对春雪桃果实品质的影响[J]. 中国果树, 2017,(2): 28-31.
WANG Xiaodi, SHI Xiangbin, LIU Fengzhi, et al. Effects of different grass species and grass growing methods on fruit quality of Chun Xue peach[J]. China Fruits, 2017,(2): 28-31.
[32] 韩轩轩, 王鹏飞, 穆霄鹏, 等. 地布覆盖下不同垄型对欧李园土壤温湿度与果实品质的影响[J]. 北方园艺, 2018,(20): 25-32.
HAN Xuanxuan, WANG Pengfei, MU Xiaopeng, et al. Effects of different ridge shapes with ground cover on soil temperature, humidity and fruit quality of Chinese dwarf cherry[J]. Northern Horticulture," 2018, (20): 25-32.
[33] 刘思, 王志磊, 张军翔. 葡萄行内覆盖对园区微域生态环境及果实品质的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(6): 73-79, 88.
LIU Si, WANG Zhilei, ZHANG Junxiang. Effects of within-row mulching on soil microsites in vineyard and fruit quality[J]. Journal of Northwest A amp; F University (Natural Science Edition), 2019, 47(6): 73-79, 88.
[34] 刘博, 黄华梨, 王多锋, 等. 覆盖方式对干热河谷区枣园土壤温度和树体光合特性及果实品质的影响[J]. 西北农业学报, 2021, 30(3): 377-385.
LIU Bo, HUANG Huali, WANG Duofeng, et al. Effect of mulching methods on soil temperature, photosynthetic characteristic and fruit quality of jujube orchard in dry and hot valley[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(3): 377-385.
[35] 管雪强, 孙德勤, 尚明华, 等. 行内生草对酿酒葡萄微域环境及品质的影响[J]. 山东农业科学, 2020, 52(9): 62-65.
GUAN Xueqiang, SUN Deqin, SHANG Minghua, et al. Effect of grassing beween lines on soil water content, fruit zone temperature and wine grape quality[J]. Shandong Agricultural Sciences," 2020, 52(9): 62-65.
[36] Hu J G, Bai S J, Zhao R H, et al. Effects of black geotextile mulch and grass mulch on the microclimate, fruit quality and anthocyanin components of Xinyu table grape[J]. New Zealand Journal of Crop and Horticultural Science, 2022: 1-18.
[37] 李宏建, 王宏, 于年文, 等. 地面覆盖对苹果树体生长和果实品质的影响[J]. 果树学报, 2019, 36(3): 296-307.
LI Hongjian, WANG Hong, YU Nianwen, et al. Effects of mulching on the growth and fruit quality of apple trees[J]. Journal of Fruit Science, 2019, 36(3): 296-307.
[38] 王波波. 葡萄园行内生草对土壤及植株矿质营养和果实品质的影响研究[D]. 北京: 中国农业科学院, 2021.
WANG Bobo. Effects of endophytic grass on soil, plant mineral nutrition and fruit quality in vineyards[D].Beijing: Chinese Academy of Agricultural Sciences, 2021.
[39] Xi Z M, Zhang Z W, Cheng Y F, et al. The effect of vineyard cover crop on main monomeric phenols of grape berry and wine in Vitis viniferal L.cv.Cabernet sauvignon[J]. Agricultural Sciences in China, 2010, 9(3): 440-448.
[40] 侯婷, 闫鹏科, 庞群虎, 等. 行内覆盖对果园土壤特性及酿酒葡萄产量和品质的影响[J]. 河南农业大学学报, 2019, 53(6): 869-875.
HOU Ting, YAN Pengke, PANG Qunhu, et al. Effects of intra-row coverage on orchard soil features and wine grape yield and quality[J]. Journal of Henan Agricultural University, 2019, 53(6): 869-875.
[41] 王波波, 王小龙, 史祥宾, 等. 不同行内生草对葡萄果实品质的影响[J]. 中国果树, 2021,(8): 58-61.
WANG Bobo, WANG Xiaolong, SHI Xiangbin, et al. Effects of endophytic grass in different rows on grape fruit quality[J]. China Fruits, 2021,(8): 58-61.
[42] 卢浩成, 魏巍, 陈武, 等. 行间种植马齿苋对玛纳斯小味儿多葡萄和葡萄酒风味轮廓的影响[J]. 北方果树, 2023,(1): 5-11.
LU Haocheng, WEI Wei, CHEN Wu, et al. Effects of inter-row planting purslane on the flavor profiles of petit verdot grape and wine in manas[J]. Northern Fruits, 2023,(1): 5-11.
[43] 段鑫垚. 不同行内覆盖处理对葡萄园土壤性质和葡萄果实品质的影响研究[D]. 杨凌: 西北农林科技大学, 2021.
DUAN Xinyao. Effects of different mulching treatments on soil properties and grape fruit quality in vineyards[D].Yangling: Northwest A amp; F University, 2021.
[44] 庞群虎. 生草覆盖对酿酒葡萄园土壤环境及酿酒葡萄品质的影响研究[D]. 银川: 宁夏大学, 2019.
PANG Qunhu. Effects of grass covering on the soil environment of winemaking vineyards and the quality of wine grapes [D]. Yinchuang: Ningxia University, 2019.
[45] 惠竹梅, 张振文, 成宇峰, 等. 行间生草对赤霞珠葡萄与葡萄酒中主要单体酚的影响[J]. 中国农业科学, 2009, 42(9): 3209-3215.
XI Zhumei, ZHANG Zhenwen, CHENG Yufeng, et al. Effect of vineyard cover crop on main monomeric phenols of grape berry and wine in Vitis viniferal L.cv.Cabernet sauvignon[J]. Scientia Agricultura Sinica, 2009, 42(9): 3209-3215.
[46] Monteiro A, Lopes C M. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal[J]. Agriculture, Ecosystems amp; Environment, 2007, 121(4): 336-342.
[47] Spayd S E, Tarara J M, Mee D L, et al. Separation of sunlight and temperature effects on the composition of Vitis viniferacv. merlot berries[J]. American Journal of Enology and Viticulture, 2002, 53(3): 171-182.
[48] 刘玉娟. 行间生草对 北红 葡萄生长微环境和生长发育的影响[D]. 银川: 宁夏大学, 2022.
LIU Yujuan. Effects of inter row grass on growth microenvironment and growth and development of Beihong grape[D]. Yinchuang: Ningxia University, 2022.
[49] Caspari H W, Neal S, Naylor A, et al. Use of cover crops and deficit irrigation to reduce vegetative vigor of Sauvignon Blanc grapevines in a humid climate[C]. Proceeding of the Fourth International Symposium on Cool Climate Viticulture and Enology," 1997: 63-66.
[50] Flores G, Blanch G P, Ruiz del Castillo M L. Postharvest treatment with (–) and (+)-methyl jasmonate stimulates anthocyanin accumulation in grapes[J]. LWT - Food Science and Technology, 2015, 62(1): 807-812.
[51] 徐洪宇, 张京芳, 成冰, 等. 26种酿酒葡萄中抗氧化物质含量测定及品种分类[J]. 中国食品学报, 2016, 16(2): 233-241.
XU Hongyu, ZHANG Jingfang, CHENG Bing, et al. Content Determination of the Antioxidant Substance and Classifying the Grape from26 kinds of the Wine Grapes[J]. Journal of Chinese Institute of Food Science and Technology," 2016, 16(2): 233-241.
Effects of different ground mulch types on the berry quality of Marselan wine grape and comprehensive evaluation
HU Jinge, BAI Shijian, CHEN Guang, CAI Junshe
(Institute of Grapes and Melons of Xinjiang Uygur Autonomous Region, Shanshan" Xinjiang 838200, China)
Abstract:【Objective】 To study the effects of different ground mulching types on the berry quality of wine grape Marselan.
【Methods】" Five-year old grafted Marselan/SO4 was taken as test materials, clean tillage one as the control to study the effects of inter-row spaces of the vineyard covered with black geotextiles (BGM) and inter-row spaces of the vineyard with natural growing grass (GM) on Marselan grape quality.
【Results】 The results showed that cluster weight, berry weight, longitudinal diameter and transverse diameter were increased by ground mulch.Wilting percent of BGM was the highest, with 5.45%, juice yield was the lowest (32.89%), there was no wilting percent for GM, juice yield was significant higher for GM than CK.Soluble solid and reducing sugar content were decreased for BGM and increased fur GM.BGM and GM decreased titratable acid and pH, but increased sugar/acid.Total phenol, flavonoids, flavanols and tannins content in fruit peel were significantly increased for BGM and GM, anthocyanins content in peel were changed, but there was no difference.FRAP and ABTS antioxidant activity for BGM and GM were increased, but DPPH antioxidant activity for BGM and GM were significantly decreased.The correlation analysis of 26 berry quality indexes showed that there were significant positive or negative correlations, with correlation coefficients ranging from -1.00 to +1.00.
【Conclusion】 In turpan, grass mulch can be selected as a new model of wine grape cultivation.
Key words:wine grape; ground mulch types; berry quality; antioxidant capacity
Fund projects:Public Welfare Research Institutes Basic Scientific Business Expensens Special Funds of the Department of Science and Technology of Xinjiang (KY2022107); Special Training Project for Ethnic Minorities in the Autonomous Region in 2022(2022D03033); The Key Research and Development Project in Turpan (2021006) ; China Agriculture Research System of MOF and MARA(CARS-29-26)
Correspondence author: HU Jinge (1982-), female, from Xinjiang,master, associate research, research direction: viticulture, (E-mail) hujinge2007@sina.com