盐胁迫及复水对棉花叶片生理生化和显微结构的影响

known 发布于 2025-07-26 阅读(278)

摘 要:【目的】研究棉花苗期响应盐胁迫的应答机制,为棉花耐盐品种筛选提供依据。【方法】对耐盐型棉花和敏感型棉花三叶期幼苗进行200 mM NaCl胁迫处理,观察NaCl处理下0、48 h和复水48 h的棉花叶片显微结构并分析生理生化指标。【结果】耐盐型和敏感型棉花幼苗在NaCl胁迫0~48 h叶片和茎秆逐渐软化,敏感型幼苗在NaCl处理下子叶枯萎并凋落,真叶叶缘轻微焦化。NaCl处理下,棉花叶片丙二醛浓度显著升高,叶绿素含量和超氧化物歧化酶活性均显著降低。经复水处理,耐盐型和敏感型棉花均得到一定的恢复,丙二醛浓度降低,而叶绿素含量、超氧化物歧化酶活性和过氧化物酶活性均升高。盐胁迫条件下,耐盐型和敏感型的棉花叶片厚度、栅栏组织厚度和海绵组织厚度均下降,且敏感型材料SS型下降幅度较大,与正常条件下差异显著,但2个材料在复水后均有所恢复,且耐盐型材料恢复更好。【结论】NaCl处理48 h不仅对棉花的生理生化水平有影响,还诱导细胞和组织发生结构性的改变,复水能有效缓解盐胁迫下棉花的生理生化水平。耐盐型棉花材料比敏感型材料具有更强的耐盐性和复水后恢复更快。

关键词:棉花;耐盐性;生理生化;显微结构;复水

中图分类号:S562 文献标志码:A 文章编号:1001-4330(2024)10-2351-07

收稿日期(Received):2024-04-06

基金项目:国家重点研发计划子项目(2021YFD1900802-4)

作者简介:赵康(1998-),男,新疆人,硕士研究生,研究方向为作物遗传育种,(E-mail)zhaokang07@yeah.net

通讯作者:高文伟(1973-),男,新疆人,教授,博士,硕士生/博士生导师,研究方向作物遗传育种,(E-mail)280594606@qq.com

0 引 言

【研究意义】土壤盐渍化严重影响粮食安全[1-2] 。全球约有80×104 hm2的灌溉土壤受到土壤盐渍化的影响,约占总灌溉面积的40%[3]。据估计至2050年世界上50%的农业用地将会发生不同程度的土壤盐渍化[4]。我国干旱和半干旱地区次生盐渍化发生面积逐年增加[5]。我国新疆降水稀少,蒸发量大,土壤中无机盐聚集,浓度升高,容易发生土壤盐渍化[6]。盐碱土是不同盐渍化土壤的总称,包括盐土、碱土、碱化土壤和其他表现出不同程度盐碱化的土壤[7-8]。盐土含有高含量中性盐,主要包括NaCl和Na2SO4,通过影响渗透平衡、离子毒害、营养吸收合成和呼吸影响作物生长及发育等[9-13]。棉花(Gossypium hirsutum L.)属锦葵科,是一种具有较好抗旱、耐盐、耐瘠薄能力的农作物,是开发利用盐碱地的“先锋作物”[14]。棉花也是我国主要的经济作物之一[15-16]。高盐胁迫影响叶绿素合成,使得幼苗生长缓慢,且叶片畸形生长,子叶难以平展[17]。棉花幼苗二叶期、三叶期时,体内已开始花芽分化,对盐较敏感[18]。通常盐胁迫下的棉花植株与干旱胁迫下的植株相似,表现出叶缘焦化、叶片颜色变暗、子叶脱落和植株萎蔫等症状,由于土壤溶液中的渗透压增加,导致生理干旱和离子积累,阻碍养分和水分的吸收[19]。因此,提高棉花对盐碱环境的耐受性尤为重要。【前人研究进展】关于耐盐机理研究,前人从膜脂过氧化与抗氧化酶,如丙二醛(MDA)、过氧化氢酶(CAT) 、超氧化物歧化酶(SOD)和过氧化物酶(POD)等进行了研究[20]。盐胁迫下植物细胞内过量累积Na+,诱导活性氧(ROS)过度产生,并启动膜脂过氧化和膜脂脱脂作用,导致膜蛋白和膜脂损失,从而破坏膜结构,影响生长发育[21-22]。植物也会将叶肉细胞中过多的Na+转运至叶脉,减少细胞质中的Na+毒害,因此植物叶绿素合成受阻,进而降低叶绿素含量[23-24]。为了适应盐胁迫,植物展现出了多种适应性策略[6]。耐盐型植物在盐胁迫下可能会增加叶片厚度[25]和根系发育[26],以提高吸收水分和营养元素。牧草Imperata cylindrica(L.Raeuschel)的盐田生态型较正常无盐环境生态型,盐碱胁迫下角质层增厚,叶片肉质化,栅栏组织发达,气孔下陷[27]。【本研究切入点】植物在盐胁迫下的显微结构和生理生化变化可反映该植物对盐的敏感性,而盐胁迫对棉花解剖结构的影响研究较少[28]。盐胁迫下植物复水是恢复其表型、生理和基因表达的有效措施。复水可以降低植物受盐度影响的程度,但是目前有关复水如何影响植物应对盐胁迫的研究还比较有限[29],因此,棉花的耐盐性仍有待探究。【拟解决的关键问题】试验通过形态学、生理及微观结构观察,研究棉花对盐胁迫的响应及其复水后的适应性,为探究棉花耐盐机理提供理论参考。

新疆农业科学第61卷 第10期赵 康等:盐胁迫及复水对棉花叶片生理生化和显微结构的影响

1 材料与方法

1.1 材 料

选用2个耐盐性差异较大的棉花材料[30]:盐敏感型52-128(salt sensitive,SS)和耐盐型泾斯棉(salt tolerant,ST),将种子用5%次氯酸钠(NaClO)消毒20 min,无菌水冲洗3次,在发芽盒(12.4 cm×17.5 cm)中播种,置于受控条件下(储存在昼夜温度26℃/18℃,相对湿度65%,昼夜时长为8 h/16 h,光照强度12 000 lx的人工气候箱中)。待子叶完整展开后,转移置于1/2 Hoaglands营养液培养至三叶期。对棉花三叶期幼苗在200 mmol/L NaCl溶液中生长48 h,于在1/2 Hoagland营养液中培养48 h(RW,re-watering)。在0、48 h、复水48 h(0、48和营养液中培养即复水48 h)分别取样,幼苗为3个生物学重复,每个重复6株,共收集18个样本。

1.2 方 法

1.2.1 生理生化指标测定

叶绿素采用便携式叶绿素仪(SPAD-502Plus)分别测定不同处理下棉株最大功能叶。采用硫代巴比妥酸比色法、氮蓝四唑光还原法和愈创木酚-过氧化氢法,分别测定丙二醛的含量、超氧化物歧化酶活性和过氧化物酶活性[31]。

1.2.2 叶片显微结构观察

采用垂直叶脉切法,将不同处理的叶片分别置于FAA固定液中。固定状态良好后,进行修剪、脱水、包埋、切片、染色、封片及镜检合格样片,并用番红-固绿染色液染片。用3DHIST型ECH(Hungary)生产的全景切片扫描仪(PANNORAMICDESK/MIDI/250/1000和CaseViewer2.2)采集和扫描浏览图像,通过Media Cybemetics(美国)生产的Image-Pro Plus 6.0分析。测量每张切片中5处叶片厚度、上表皮厚度、栅栏组织厚度、海棉组织厚度和下表皮厚度。

1.3 数据处理

采用Excel 2020整理分析试验数据,采用SPSS型 26.0进行差异性检验,通过GraphPad Prism绘制分组比较图。

2 结果与分析

2.1 棉花幼苗盐胁迫和复水后表型变化

研究表明,ST型和SS型幼苗在NaCl胁迫0~48 h中叶片和茎秆逐渐软化,子叶在48 h萎蔫严重。SS型幼苗在48 h子叶枯萎并凋落,真叶叶缘轻微焦化。复水后,ST型生长得到缓解,SS型真叶枯萎。图1

2.2 棉花叶片对盐胁迫和复水后生理生化的响应

研究表明,NaCl 48 h处理下,ST型和SS型幼苗丙二醛浓度显著升高,叶绿素含量、超氧化物歧化酶活性和过氧化物酶活性均降低,盐胁迫影响了棉株正常的生长发育。ST型和SS型的丙二醛浓度分别较 0 h (CK)升高36.07%和64.61%,复水48 h后ST型幼苗丙二醛浓度较CK变化不明显,而SS型幼苗丙二醛浓度较CK升高11.54%。盐胁迫显著影响了细胞质膜过氧化水平,而复水对ST型的缓解效果优于SS型。ST型和SS型幼苗的叶绿素含量,盐胁迫下分别较CK降低10.29%和13.89%,复水后较CK分别降低5.23%和10.36%。盐胁迫显著抑制了棉花叶绿素合成,复水也显著改善了ST型和SS型的叶绿素合成。ST型的超氧化物歧化酶活性和过氧化物酶活性,在盐胁迫下分别降低3.06%和12.98%,复水后,分别较CK降低0.36%和12.51%。SS型的超氧化物歧化酶活性和过氧化物酶活性,在盐胁迫下分别显著降低27.31%和22.46%,复水后较CK显著降低39.79%和36.67%。盐胁迫下ST型活性氧清除能力强,SS型活性氧清除能力强,且复水并未改善SS型的活性氧清除能力。图2

2.3 盐胁迫和复水后棉花叶片显微结构

研究表明,正常条件下ST型和SS型幼苗切片染色较深,显微结构排列较紧密,泡状细胞形如单层不规则的四边形,并紧密排列;盐胁迫下泡状细胞呈卵圆形,栅栏组织和海绵组织细胞排列较松散,叶片变得软化。复水后泡状细胞形如长卵形,叶片较平展,逐渐恢复正常生长。图3

在正常条件下,ST型和SS型棉花幼苗的叶表皮结构差异不显著;NaCl胁迫条件下,ST型和SS型的叶片厚度、栅栏组织厚度和海绵组织厚度均下降,在复水后有所恢复。ST型棉花幼苗经过NaCl处理后,叶片厚度、栅栏组织厚度和海绵组织厚度较对照分别降低16.17%、13.92%和18.46%;SS型的叶片厚度、栅栏组织厚度和海绵组织厚度较对照分别显著降低32.43%、30.13%和41.10%。与对照差异显著。表1

3 讨 论

3.1 盐通过限制植物对水分的吸收而渗透损害,并导致植物细胞中积累过高离子含量胁迫[32]。棉花亦进化出一系列应对盐度和其他环境压力的反应,包括形态、生理、生化和分子过程来应对环境胁迫,可避免胁迫后恢复,使植物能够在非生物胁迫下生存[33]。耐盐材料与盐敏感材料的区别可能就在于耐盐材料在遇到外部高盐胁迫的时候,相对盐敏感材料有一个快速适应、生理间和耐受力[34]。NaCl 48h处理下,棉花幼苗叶片受损伤严重,ST型和SS型幼苗叶片的丙二醛浓度显著升高,叶绿素含量和超氧化物歧化酶活性均显著降低。经过复水处理后,ST型和SS型得到一定的恢复,丙二醛浓度降低,叶绿素含量、超氧化物歧化酶活性和过氧化物酶活性均升高。与袁雨豪[34]的研究结果相类似,耐盐型材料比敏感型材料表现出更大的耐盐性和复水后更快的恢复。

3.2 盐分不仅改变植物的代谢机制, 而且影响植物的正常生长, 尤其是植物的形态学和解剖学[35],叶片是高等植物光合作用的中心,在遭受逆境胁迫时,植物叶片的表型、生理、解剖结构等性状均能及时响应[36]。棉花Na+区隔化研究表明,陆地棉叶片腺毛泌盐是棉花耐盐的具体表现之一[37]。叶片的显微结构特征是植物适应盐碱胁迫的一个重要方面,在NaCl胁迫下, 棉花叶片各组成细胞失水收缩,叶片横切面厚度变薄,栅栏组织等细胞形态受到影响[28]。研究中正常条件下棉花叶片显微结构排列较紧密,泡状细胞形如单层不规则的四边形,并紧密排列;盐胁迫下泡状细胞呈卵圆形,栅栏组织和海绵组织细胞排列较松散,叶片变得软化。复水后泡状细胞形如长卵形,叶片较平展,逐渐恢复正常生长。在正常条件下,ST型和SS型棉花幼苗的叶表皮结构差异不显著;NaCl胁迫条件下,ST型和SS型的叶片厚度、栅栏组织厚度和海绵组织厚度均下降,在复水后ST型得到了更好的恢复。

4 结 论

NaCl处理下,棉花叶片丙二醛浓度显著升高,叶绿素含量和超氧化物歧化酶活性均显著降低。经复水处理,耐盐型和敏感型均得到一定的恢复,丙二醛浓度降低,叶绿素含量、超氧化物歧化酶活性和过氧化物酶活性均升高。盐胁迫不仅对棉花的生理生化水平有影响,还诱导细胞和组织发生结构性的改变,复水可有效缓解盐胁迫下棉花的生理生化水平。耐盐型材料比敏感型材料表现出更大的耐盐性和复水后更快的恢复。

参考文献(References)

[1]Li Q, Song J. Analysis of widely targeted metabolites of the euhalophyte Suaeda salsa under saline conditions provides new insights into salt tolerance and nutritional value in halophytic species[J].BMC Plant Biology, 2019, 19(1): 388.

[2] Wang J, Jiang X, Zhao C F, et al. Transcriptomic and metabolomic analysis reveals the role of CoA in the salt tolerance of Zygophyllum spp[J].BMC Plant Biology, 2020, 20(1): 9.

[3] Li X W, Zheng H L, Wu W S, et al. QTL mapping and candidate gene analysis for alkali tolerance in japonica rice at the bud stage based on linkage mapping and genome-wide association study[J].Rice, 2020, 13(1): 48.

[4] 赵起越, 夏夜, 邹本东. 土壤盐渍化成因危害及恢复[J].农业与技术, 2022, 42(11): 115-119.

ZHAO Qiyue, XIA Ye, ZOU Bendong. Causes, harm and recovery of soil salinization[J].Agriculture and Technology, 2022, 42(11): 115-119.

[5] 努尔沙吾列·哈斯木汉. 新疆土壤盐渍化成因及其防治对策[J].科学技术创新, 2020, (9): 52-53.

Nuershawulie Hasimuhan. Causes of soil salinization in Xinjiang and its control countermeasures[J].Scientific and Technological Innovation, 2020, (9): 52-53.

[6] Zhao H X, Gu B J, Chen D C, et al. Physicochemical properties and salinization characteristics of soils in coastal land reclamation areas: a case study of China-Singapore Tianjin Eco-City[J].Heliyon, 2022, 8(12): e12629.

[7]Rogers P P, Llamas M R, Martínez-Cortina L. Water Crisis: Myth Or Reality[M].Taylor and Francis, CRC Press.

[8] van Zelm E, Zhang Y X, Testerink C. Salt tolerance mechanisms of plants[J].Annual Review of Plant Biology, 2020, 71: 403-433.

[9] Zhang B L, Chen X G, Lu X K, et al. Transcriptome analysis of Gossypium hirsutum L. reveals different mechanisms among NaCl, NaOH and Na2CO3 stress tolerance[J].Scientific Reports, 2018, 8: 13527.

[10] Chen W C, Cui P J, Sun H Y, et al. Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.)[J].Industrial Crops and Products, 2009, 30(3): 351-358.

[11] Byrt C S, Munns R, Burton R A, et al. Root cell wall solutions for crop plants in saline soils[J].Plant Science, 2018, 269: 47-55.

[12] Geng G, Li R R, Stevanato P, et al. Physiological and transcriptome analysis of sugar beet reveals different mechanisms of response to neutral salt and alkaline salt stresses[J].Frontiers in Plant Science, 2020, 11: 571864.

[13] 卢秀茹, 贾肖月, 牛佳慧. 中国棉花产业发展现状及展望[J].中国农业科学, 2018, 51(1): 26-36.

LU Xiuru, JIA Xiaoyue, NIU Jiahui. The present situation and prospects of cotton industry development in China[J].Scientia Agricultura Sinica, 2018, 51(1): 26-36.

[14] 史晓玲. 国家、生态、技术、市场——棉花与鲁西北社会变迁(1906-2006)[D].济南: 山东大学, 2020.

SHI Xiaoling. Country, Ecology, Technology and Market: Cotton and Social changes in Northwest Shandong(1906-2006)[D].Jinan: Shandong University, 2020.

[15] 吴方卫, 张锦华. 丝绸之路经济带农牧业合作的空间、潜力与中国农业“走出去” 策略[J].科学发展, 2016, (4): 76-81.

WU Fangwei, ZHANG Jinhua. Space and potential for husbandry cooperation in silk road economic belt and “going out” strategy of Chinese agriculture[J].Scientific Development, 2016, (4): 76-81.

[16] 苏莹, 郭安慧, 华金平. 棉花耐盐性鉴定方法探讨[J].中国农业大学学报, 2021, 26(12): 11-19.

SU Ying, GUO Anhui, HUA Jinping. Strategies for evaluation the salt tolerance in cotton[J].Journal of China Agricultural University, 2021, 26(12): 11-19.

[17] 孙小芳, 刘友良, 陈沁. 棉花耐盐性研究进展[J].棉花学报, 1998, 10(3): 118-124.

SUN Xiaofang, LIU Youliang, CHEN Qin. Recent progresses in studies on salinity tolerence in cotton[J].Cotton Science, 1998, 10(3): 118-124.

[18]Maryum Zahra, Luqman Tahira, Nadeem Sahar, et al. An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cottonamp;#13;[J].Frontiers in Plant Science, 2022, 13.

[19]Fu H Q,Yang Y Q. How Plants Tolerate Salt Stress[J], 2023, 45(7): .5914-5934.

[20] 毛桂莲, 许兴, 徐兆桢. 植物耐盐生理生化研究进展[J].中国生态农业学报, 2004, 12(1): 43-46.

MAO Guilian, XU Xing, XU Zhaozhen. Advances in physiological and biochemical research of salt tolerance in plant[J].Chinese Journal of Eco-Agriculture, 2004, 12(1): 43-46.

[21] Hasanuzzaman M, Oku H, Nahar K, et al. Nitric oxide-induced saltstress tolerance in plants: ROS metabolism, signaling, and molecular interactions[J].Plant Biotechnology Reports, 2018, 12(2): 77-92.

[22] 段慧荣, 周学辉, 胡静, 等. 高等植物K+吸收及转运的分子机制研究进展[J].草业学报, 2019, 28(9): 174-191.

DUAN Huirong, ZHOU Xuehui, HU Jing, et al. Advances in understanding molecular mechanisms of K+ uptake and transport in higher plants[J].Acta Prataculturae Sinica, 2019, 28(9): 174-191.

[23] Hauser F, Horie T. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K(+)/Na(+) ratio in leaves during salinity stress[J].Plant, Cell amp; Environment, 2010, 33(4): 552-565.

[24] 李瑞强, 王玉祥, 孙玉兰, 等. 盐胁迫对无芒雀麦幼苗叶片形态及解剖结构的影响[J].草地学报, 2022, 30(6): 1450-1459.

LI Ruiqiang, WANG Yuxiang, SUN Yulan, et al. Effects of salt stress on leaf morphology and anatomical structure of Bromus inermis seedlings[J].Acta Agrestia Sinica, 2022, 30(6): 1450-1459.

[25] 李双男, 郭慧娟, 侯振安. 不同盐碱胁迫对棉花离子组稳态及Na+相关基因表达影响[J].棉花学报, 2019, 31(6): 515-528.

LI Shuangnan, GUO Huijuan, HOU Zhenan. Ionic homeostasis and expression of Na+ related genes of cotton under different salt and alkali stresses[J].Cotton Science, 2019, 31(6): 515-528.

[26] Hameed M, Ashraf M, Naz N. Anatomical adaptations to salinity in cogon grass[Imperata cylindrica (L.) Raeuschel]from the Salt Range, Pakistan[J].Plant and Soil, 2009, 322(1): 229-238.

[27] 赵海燕, 王建设, 刘林强, 等. 海岛棉苗期盐胁迫下形态学和生理学指标变化[J].中国农业科学, 2017, 50(18): 3494-3505.

ZHAO Haiyan, WANG Jianshe, LIU Linqiang, et al. Morphological and physiological mechanism of salt tolerance in Gossypium barbadense to salt stress at seedling stage[J].Scientia Agricultura Sinica, 2017, 50(18): 3494-3505.

[28] Azeem A, Wu Y Y, Xing D K, et al. Photosynthetic response of two okra cultivars under salt stress and re-watering[J].Journal of Plant Interactions, 2017, 12(1): 67-77.

[29] Du L, Cai C P, Wu S, et al. Evaluation and exploration of favorable QTL alleles for salt stress related traits in cotton cultivars (G. hirsutum L.)[J].PLoS One, 2016, 11(3): e0151076.

[30] 范蓉. 基于生理指标与基因表达量评价棉花抗旱耐盐性[D].乌鲁木齐: 新疆农业大学, 2020.

FAN Rong. Evaluation of Cotton Drought and Salt Tolerance Based on Physiological Indexes and Gene Expression[D].Urumqi: Xinjiang Agricultural University, 2020.

[31] 李娜. 不同基因型大白菜对盐碱胁迫的响应特性[D].泰安: 山东农业大学, 2022.

LI Na. Response Characteristics of Different Genotype Chinese Cabbages to Salt and Alkali Stress[D].Taian: Shandong Agricultural University, 2022.

[32] 叶武威. 棉花种质的耐盐性及其耐盐基因表达的研究[D].北京: 中国农业科学院, 2007.

YE Wuwei. Study on the Salinity Resistance and Resistance Gene Expression in Cotton Germplasm[D].Beijing: Chinese Academy of Agricultural Sciences, 2007.

[33] 王德龙. 盐胁迫下棉花细胞壁重塑相关基因GhEXLB1与GhGRP1功能研究[D].乌鲁木齐: 新疆农业大学, 2021.

WANG Delong. Study on the Function of GhEXLB1 and GhGRP1 Genes Related to Cell Wall Remodeling in Cotton under Salt Stress[D].Urumqi: Xinjiang Agricultural University, 2021.

[34] 袁雨豪. 盐胁迫下糜子的生理响应及适应机制研究[D].杨凌: 西北农林科技大学, 2022.

YUAN Yuhao. Study on Physiological Response and Adaptive Mechanism of Broomcorn Millet(Panicum Miliaceum L.)Under Salt Stress[D].Yangling: Northwest A amp; F University, 2022.

[35] 石亚飞, 闵炜芳, 摆小蓉, 等. 外源物调节碱胁迫水稻生理特性及相关基因表达的效应[J].植物营养与肥料学报, 2023, 29(5): 813-825.

SHI Yafei, MIN Weifang, BAI Xiaorong, et al. Effects of exogenous regulatory substances on physiological characteristics and gene expression of rice seedlings under alkali stress[J].Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 813-825.

[36] Zhao B Q, Liu Q Y, Wang B S, et al. Roles of phytohormones and their signaling pathways in leaf development and stress responses[J].Journal of Agricultural and Food Chemistry, 2021, 69(12): 3566-3584.

[37] 彭振. 棉花苗期耐盐和耐热的生理机制及其基因转录调控分析[D].雅安: 四川农业大学, 2016.

PENG Zhen. The Gene Transcriptional Regulation Analysis and Physiology Mechanism of Salt Tolerance and Thermotolerance at Seedling Stage in Upland Cotton[D].Yaan: Sichuan Agricultural University, 2016.

Effects of salt stress and re-watering on the physiology,

biochemistry and microstructure of cotton leaf structure

ZHAO Kang1, CHENG Rongrong2,PANG Bo1, ZHANG Mengyuan1, ZHANG Ru1,

WANG Yongpan1, YANG Zhining1,WANG Zhi2,WANG Honggang1, GAO Wenwei1

(1. College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China; 2. No. 3 Exploration Institute of Geology and Mineral Resources, Yantai Shandong 264000, China;3.Center of Urumqi Comprehensive Survey Natural Resources, Urumqi 830057, China)

Abstract:【Objective】 To study the response mechanism of cotton seedlings in response to salt stress, and to provide experimental basis for the screening of salt-tolerant varieties of cotton. 【Methods】 Salt-tolerant and sensitive cotton seedlings were treated with 200 mM NaCl at the three-leaf stage, and the microstructures of cotton leaves were observed, and physiological and biochemical indexes were analyzed at 0, 48 h and 48 h of re-watering under NaCl treatment.【Results】 Salt-tolerant and sensitive seedlings gradually softened their leaves and stalks under NaCl stress from 0-48 h. Sensitive seedlings withered and faded their cotyledons and slightly scorched the margins of the true leaves under NaCl treatment. The malondialdehyde concentration of cotton leaves was significantly elevated, and the chlorophyll content and the activity of superoxide dismutase were significantly reduced under NaCl treatment. After re-watering, both salt-tolerant and sensitive types were somewhat restored, malondialdehyde concentration was reduced, and chlorophyll content, superoxide dismutase activity and peroxidase activity were increased.Under salt stress conditions, leaf thickness, fenestrated tissue thickness and spongy tissue thickness of salt-tolerant and sensitive types decreased, and the SS type of sensitive material decreased more, and the difference was significant compared with normal conditions, but both materials recovered after re-watering, and the salt-tolerant material recovered better. 【Conclusion】 NaCl treatment for 48 h not only has an effect on the physiological and biochemical levels of cotton, but also induces the cellular activity of superoxide dismutase and oxidase activity. levels, but also induces structural changes in cells and tissues, and re-watering can effectively alleviate the physiological and biochemical levels of cotton under salt stress. Salt-tolerant materials have stronger salt tolerance and faster recovery after re-watering than sensitive materials.

Key words: cotton; salt tolerance; physiology and biochemistry; microstructure; re-watering

Fund projects:National key research and development plan sub-project(2021YFD1900802-4)

Correspondence author: GAO Wenwei (1973-), male, from Xinjiang, Professor, Ph.D., Master/Doctoral s supervisor instructor, research direction:crop genetics and breeding, (E-mail) 280594606@qq.com

标签:  棉花 

免责声明

本文来自网络,不代表本站立场。如有不愿意被转载的情况,请联系我们。