doi:10.6048/j.issn.1001-4330.2024.05.001
摘" 要:【目的】研究土壤水分对不同抗旱性春小麦品种叶片保护性酶活性及产量的影响,为选育春小麦抗旱品种及制定节水高产措施提供理论依据。
【方法】在大田条件下,以抗旱性较强的品种新春46号、抗旱性中等的品种新春37号、抗旱性较弱的品种新春26号为材料,设置3种水分处理,研究土壤水分对不同抗旱性春小麦品种旗叶超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性、丙二醛(MDA)含量及产量的影响。
【结果】随着水分亏缺程度的加剧,春小麦旗叶SOD、CAT活性在扬花期呈升高的趋势,而在灌浆期则呈先升高后降低的趋势;POD活性在扬花期呈先升高后降低的趋势,灌浆期则呈升高的趋势;MDA含量呈升高的趋势;SOD、POD活性表现为抗旱性较强的品种新春46号gt;抗旱性中等的品种新春37号gt;抗旱性较弱的品种新春26号,MDA活性在春小麦品种间则呈相反的趋势。收获穗数、穗粒数和产量均随着水分亏缺程度的加剧而降低,抗旱性较强的品种新春46号在有限灌溉和亏缺灌溉处理下,其收获穗数和穗粒数降低幅度小于新春37号和新春26号,且产量高于新春37号和新春26号。
【结论】抗旱性较强的品种新春46号在有限灌溉和亏缺灌溉条件下,旗叶SOD、POD酶活性较高,MDA含量较低,活性氧清除能力较强,有效延缓了小麦植株的衰老,收获穗数和穗粒数较抗旱性中等的新春37号和抗旱性较弱的新春26号下降幅度低,在水分亏缺条件下有利于获得较高的产量。
关键词:春小麦;土壤水分;抗旱性品种;保护性酶活性;产量
中图分类号:S512""" 文献标志码:A""" 文章编号:1001-4330(2024)05-1041-07
收稿日期(Received):
2023-10-11
基金项目:
新疆维吾尔自治区天山青年计划-杰出青年科技人才培养项目“新疆高产春小麦品种节水机制的生理生态学基础研究”(2020Q009);新疆维吾尔自治区重大科技专项子课题“新疆小麦生产气象灾害防控关键技术研究与集成示范”(2022B02001-3)
作者简介:
张宏芝(1983-), 男, 甘肃永昌人, 副研究员, 研究方向为小麦高产栽培, (E-mail)dreamzhz@163.com
通讯作者:
樊哲儒(1964-), 男, 甘肃人, 研究员, 研究方向为小麦遗传育种, (E-mail)fzr518@163.com
张跃强(1976-), 男, 新疆奇台人, 研究员, 研究方向为小麦遗传育种, (E-mail)zhangyqyhm@163.com
0" 引 言
【研究意义】干旱是导致作物产量低而不稳的主要因素之一[1-2]。在滴灌条件下,选用具有较强抗旱能力的小麦品种,通过滴灌精确控制水分,提升小麦生物节水潜力,延缓植株衰老。因此,在高产稳产前提下实现高效用水是新疆小麦获得高产的关键措施。【前人研究进展】水分胁迫将影响作物体内活性氧的产生和抗氧化酶活性之间的平衡系统,当胁迫程度较轻时,超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)可通过酶活力升高来清除体内产生的活性氧,使其不至于伤害植物[3]。当遭受干旱胁迫时,作物细胞中活性氧产生和清除的平衡会被破坏,体内的防御酶SOD、POD、CAT将被抑制,MDA含量增加,导致细胞受到伤害[4]。在施氮条件下,随着水分胁迫的加剧,SOD、POD、CAT活性均有所增加,其中POD活性对干旱胁迫响应最快[5]。【本研究切入点】不同水分处理对小麦品种保护性酶活性的影响已有研究,但不同水分处理对滴灌条件下不同抗旱性春小麦品种保护性酶活性及产量和产量构成因素的影响研究尚较少。需研究土壤水分对不同抗旱性春小麦品种保护性酶活性及产量的影响。【拟解决的关键问题】选用前期筛选的不同抗旱性春小麦品种为材料,分析土壤水分对不同抗旱性春小麦品种SOD、POD、CAT活性和MDA含量及产量的影响,研究土壤水分对不同抗旱性春小麦品种衰老特性的影响,为春小麦水分管理和抗旱品种的选育提供理论依据。
1" 材料与方法
1.1" 材 料
试验于2021~2022年在新疆农业科学院核技术生物技术研究所军户农场小麦育种基地(87°01′E, 43°96′N)进行,海拔717.2 m,土壤类型为灰漠土。选择抗旱性较强的品种新春46号、抗旱性中等的品种新春37号、抗旱性较弱的品种新春26号为材料。
1.2" 方 法
1.2.1" 试验设计
试验为裂区设计,水分处理为主区,品种为副区。水分处理设置3个水平,W1:生育期滴水总量300 m3/667m2(常规灌溉);W2:生育期滴水总量250 m3/667m2(有限灌溉);W3:生育期滴水总量200 m3/667m2(亏缺灌溉),水分处理出苗后滴水8次;小区面积15 m2=5 m×3 m,3次重复,水分处理间设置隔离带。采用水表和球阀控制水量。所有处理基施磷酸二铵375 kg/hm2,2叶1心期追施尿素75 kg/hm2,拔节期追施尿素225 kg/hm2,孕穗期追施尿素75 kg/ hm2(追肥随水滴施);播种量375 kg/hm2,行距16 cm。
1.2.2" 测定指标
1.2.2.1" 保护性酶活性和丙二醛含量
于春小麦扬花期和灌浆中期取不同处理旗叶,每处理取15片叶,
经液氮速冻后放入超低温冰箱,使用ELISA(酶联免疫吸附)试剂盒法测定
超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性及丙二醛(MDA)含量。
1.2.2.2" 产量及产量构成
小麦收获期进行田间测产,每处理取2 m2样方,每处理重复5次,取平均值;每处理取定点1 m行长进行室内考种(单位面积产量、穗数、穗粒数和千粒重)。
1.3" 数据处理
采用DPS软件、Duncan多重比较法进行数据统计分析。
2" 结果与分析
2.1" 不同处理下春小麦SOD酶活性的变化
研究表明,随着水分亏缺程度的加剧,春小麦扬花期旗叶SOD酶活性升高,灌浆期SOD酶活性呈先升高后降低的趋势,以W2(有限灌溉胁迫)处理较高。水分亏缺处理前期,叶片清除活性氧的能力增强,可维持活性氧代谢平衡,而长期水分亏缺则导致春小麦生长后期酶活性氧代谢紊乱、细胞膜受到伤害、SOD酶活性降低。有限灌溉和亏缺灌溉条件下,SOD酶活性表现为抗旱性较强的品种新春46号gt;抗旱性中等的品种新春37号gt;抗旱性较弱的品种新春26号。图1
2.2" 不同处理下春小麦POD酶活性的变化
研究表明,随着水分亏缺程度的加剧,春小麦扬花期旗叶POD活性呈先升高后降低的趋势,灌浆期呈上升的趋势。春小麦扬花期品种间POD活性差异不明显,灌浆期品种间POD活性表现为抗旱性较强的品种新春46号gt;抗旱性中等的品种新春37号gt;抗旱性较弱的品种新春26号。图2
2.3" 不同处理下春小麦CAT酶活性的变化
研究表明,随着水分亏缺程度的加剧,春小麦扬花期旗叶CAT活性升高,灌浆期呈先升高后降低的趋势,以有限灌溉处理较高。春小麦品种间CAT活性差异不明显。图3
2.4" 不同处理下春小麦MDA含量的变化
研究表明,随着水分亏缺程度的加剧春小麦扬花期和灌浆期旗叶MDA含量均升高,尤其是亏缺灌溉处理。春小麦旗叶MDA含量表现为抗旱性较强的品种新春46号<抗旱性中等的品种新春37号<抗旱性较弱的品种新春26号。图4
2.5" 不同处理下春小麦产量及产量的构成因素
研究表明,有限灌溉和亏缺灌溉条件下,产量均表现为抗旱性较强的品种新春46号gt;抗旱性中等的品种新春37号gt;抗旱性较弱的品种新春26号,且新春46号在2种水分亏缺处理下产量下降幅度较新春37号和新春26号低。收获穗数和穗粒数均随着水分亏缺程度的加剧而显著降低,千粒重下降不明显;品种间表现为新春46号在有限灌溉和亏缺灌溉处理下收获穗数和穗粒数降低幅度小于新春37号和新春26号。表1
3" 讨 论
3.1
小麦叶片衰老与叶片的活性氧积累,以及活性氧清除系统能力降低,导致细胞生物膜和其他生物大分子结构与功能受到破坏有关[2-3]。SOD、POD、CAT是3种主要的抗氧化酶,可以降低植物体内逆境环境造成的氧化胁迫,水分亏缺对小麦旗叶和穗器官抗氧化酶活性有显著影响[6-7]。随着灌水量的减少,植株衰老时间加快,过氧化物酶(POD)和过氧化氢酶(CAT)活性均呈先增后降的趋势,峰值出现时间提前;旗叶丙二醛(MDA)含量逐渐升高,籽粒灌浆中后期增量显著[8]。
蔡昆争等[9]研究表明,干旱胁迫在小麦不同生育期均造成叶片和根系的 SOD、POD、CAT 活性显著提高。轻度或中度干旱胁迫
初期,各种酶的活性缓慢上升,重度干旱胁迫或干旱持续时间过长,酶活性逐渐减弱或失活[10]。试验研究表明,随着水分亏缺程度的加剧,春小麦旗叶SOD、CAT活性在扬花期呈升高的趋势,灌浆期则呈先升高后降低的趋势;POD活性扬花期呈先升高后降低的趋势,灌浆期则呈升高的趋势;MDA含量呈升高的趋势。张仁和等[11]在玉米上的研究也发现,干旱胁迫下叶片抗氧化酶活性呈先升高后降低的趋势,干旱胁迫初期对保护系统酶活性升高有诱导作用,及时清除过量活性氧,从而维持活性氧代谢平衡,重度胁迫下活性氧清除酶的活性下降、活性氧代谢紊乱、细胞膜受伤害。
3.2
干旱条件下,抗旱性弱的小麦品种抗氧化酶保护系统不协调,并导致膜脂过氧化程度增强;而灌浆后期POD活性提高增强
了膜脂过氧化程度,旗叶衰老加速[12]。相同处理条件下,抗旱性品种小麦MDA含量相对较低,抗氧化酶活性显著高于水分敏感性品种[13]。花后干旱胁迫下,持绿型作物能够保持较高的超氧化物歧化酶(SOD)和过氧化物酶(POD)活性,提高脯氨酸含量,降低丙二醛(MDA)含量,使绿叶面积和光合生产力得到有效提高[14-15]。试验研究表明,SOD、POD活性抗旱性较强的品种新春46号gt;抗旱性中等的品种新春37号gt;抗旱性较弱的品种新春26号,CAT活性品种间差异较小,MDA含量表现为抗旱性较强的品种新春46号lt;抗旱性中等的品种新春37号lt;抗旱性较弱的品种新春26号。抗旱性较强的品种,其保护酶的活性也较高[16]。同一水分处理下保护系统酶活性不同品种间的差异较大,抗旱性高的品种明显高于抗旱性低的品种[13,17]。
小麦拔节期适度干旱虽然显著降低成穗数,但增加了穗粒数、而且延缓了开花后叶片衰老、显著提高叶片净光合速率,籽粒灌浆速率、千粒重、籽粒产量和水分利用效率[18]。然而拔节期过度干旱则会降低小麦有效穗数和穗粒数,严重干旱条件下小麦千粒重、单株和单位面积籽粒产量亦显著降低[19-20]。研究表明,随着水分亏缺程度的加剧,收获穗数、穗粒数和产量均显著降低,抗旱性较强的品种新春46号在有限灌溉和亏缺灌溉处理下,其收获穗数和穗粒数降低幅度小于新春37号和新春26号,产量降低幅度也较小。干旱胁迫下高抗品种减产幅度小,减缓了干旱对产量的影响。干旱胁迫使小麦的有效穗数、穗粒数、千粒重及产量均显著下降。轻度干旱胁迫下,有效穗数和产量降幅较大;严重干旱胁迫下,穗粒数、千粒重和产量下降的幅度均更明显[19]。
4" 结 论
抗旱性较强的品种新春46号在有限灌溉和亏缺灌溉条件下,旗叶SOD、POD酶活性较高,MDA含量较低,活性氧清除能力较强,有效的延缓小麦植株的衰老;收获穗数和穗粒数较抗旱性中等和抗旱性较弱的品种下降幅度低,在水分亏缺条件下有利于获得较高的产量。在小麦实际生产中的应根据不同小麦品种的抗旱性强弱,合理进行水分运筹,延缓小麦植株衰老,延长叶片的功能期,从而提高产量。
参考文献(References)
[1]
Deng X P, Shan L, Zhang H P, et al. Improving agricultural water use efficiency in arid and semiarid areas of China[J]. Agricultural Water Management, 2006, 80(1/2/3): 23-40.
[2] 屈艳萍, 高辉, 吕娟, 等. 基于区域灾害系统论的中国农业旱灾风险评估[J]. 水利学报, 2015, 46(8): 908-917.
QU Yanping, GAO Hui, LYU Juan, et al. Agricultural drought disaster risk assessment in China based on the regional disaster system theory[J]. Journal of Hydraulic Engineering, 2015, 46(8): 908-917.
[3] 魏炜, 赵欣平, 吕辉, 等. 三种抗氧化酶在小麦抗干旱逆境中的作用初探[J]. 四川大学学报(自然科学版), 2003, 40(6): 1172-1175.
WEI Wei, ZHAO Xinping, LYU Hui, et al. The study of the function of three antioxidant enzymes in wheat leaf under drought stress[J]. Journal of Sichuan University (Natural Science Edition), 2003, 40(6): 1172-1175.
[4] 孔东, 晏云, 段艳, 等. 不同水氮处理对冬小麦生长及产量影响的田间试验[J]. 农业工程学报, 2008, 24(12): 36-40.
KONG Dong, YAN Yun, DUAN Yan, et al. Field experiment on growth and yields of winter wheat under different water and nitrogen treatments[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(12): 36-40.
[5] 张迪, 孙婷, 王冀川, 等. 不同水氮组合对滴灌冬小麦叶片保护性酶活性及产量的影响[J]. 新疆农业科学, 2018, 55(10): 1775-1785.
ZHANG Di, SUN Ting, WANG Jichuan, et al. Effects of different water and nitrogen combinations on protective enzyme activities and yield of winter wheat under drip irrigation[J]. Xinjiang Agricultural Sciences," 2018, 55(10): 1775-1785.
[6] Gill M B, Cai K F, Zhang G P, et al. Brassinolide alleviates the drought-induced adverse effects in barley by modulation of enzymatic antioxidants and ultrastructure[J]. Plant Growth Regulation, 2017, 82(3): 447-455.
[7] Liu M X, Chen J J, Guo Z F, et al. Differential responses of polyamines and antioxidants to drought in a centipedegrass mutant in comparison to its wild type plants[J]. Frontiers in Plant Science, 2017, 8: 792.
[8] 李清瑶. 灌水量对强筋小麦旗叶衰老和籽粒发育特性的调控效应及其生理基础[D]. 秦皇岛: 河北科技师范学院, 2021.
LI Qingyao. Effects of Irrigation Volume on Flag Leaf Senescence and Grain Development Characteristics of Strong Gluten Wheat and Its Physiological Basis[D]. Qinhuangdao: Hebei Normal University of Science amp; Technology, 2021.
[9] 蔡昆争, 吴学祝, 骆世明, 等. 不同生育期水分胁迫对水稻根系活力、叶片水势和保护酶活性的影响[J]. 华南农业大学学报, 2008, 29(2): 7-10.
CAI Kunzheng, WU Xuezhu, LUO Shiming, et al. Effects of water stress at different growth stages on root activity, leaf water potential and protective enzymes activity in rice[J]. Journal of South China Agricultural University, 2008, 29(2): 7-10.
[10] 张永福, 黄鹤平, 银立新, 等. 冷(热)激对干旱胁迫下玉米活性氧清除及膜脂过氧化的调控机制[J]. 江苏农业科学, 2015, 43(5): 56-60.
ZHANG Yongfu, HUANG Heping, YIN Lixin, et al. Regulation mechanism of cold (heat) shock on active oxygen scavenging and membrane lipid peroxidation in maize under drought stress[J]. Jiangsu Agricultural Sciences, 2015, 43(5): 56-60.
[11] 张仁和, 郑友军, 马国胜, 等. 干旱胁迫对玉米苗期叶片光合作用和保护酶的影响[J]. 生态学报, 2011, 31(5): 1303-1311.
ZHANG Renhe, ZHENG Youjun, MA Guosheng, et al. Effects of drought stress on photosynthetic traits and protective enzyme activity in maize seeding[J]. Acta Ecologica Sinica, 2011, 31(5): 1303-1311.
[12] 王征宏. 干旱对小麦灌浆期物质转运的调控[D]. 杨凌: 西北农林科技大学, 2009.
WANG Zhenghong. Regulation of Drought Stress on Assimilate Translocation during Grain Filling in Wheat[D]. Yangling: Northwest A amp; F University, 2009.
[13] 叶君, 邓西平, 王仕稳, 等. 干旱胁迫下褪黑素对小麦幼苗生长、光合和抗氧化特性的影响[J]. 麦类作物学报, 2015, 35(9): 1275-1283.
YE Jun, DENG Xiping, WANG Shiwen, et al. Effects of melatonin on growth, photosynthetic characteristics and antioxidant system in seedling of wheat under drought stress[J]. Journal of Triticeae Crops, 2015, 35(9): 1275-1283.
[14] Song Y W, Xiang F Y, Zhang G Z, et al. Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana[J]. Frontiers in Plant Science," 2016, 7: 181.
[15] Zhang K W, Gan S S. An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves[J]. Plant Physiology," 2012, 158(2): 961-969.
[16] Sgherri C L M, Maffei M, Navari-Izzo F. Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering[J]. Journal of Plant Physiology, 2000, 157(3): 273-279.
[17] 杨贝贝, 赵丹丹, 任永哲, 等. 不同小麦品种对干旱胁迫的形态生理响应及抗旱性分析[J]. 河南农业大学学报, 2017, 51(2): 131-139.
YANG Beibei, ZHAO Dandan, REN Yongzhe, et al. Drought resistance of different wheat cultivars and physiological response to drought stress[J]. Journal of Henan Agricultural University," 2017, 51(2): 131-139.
[18] 胡洋山, 汤颖子, 李治, 等. 小麦分蘖成穗数相关分子标记在重组自交系(RIL)群体中的有效性验证及实用性评价[J]. 麦类作物学报, 2018, 38(1): 8-15.
HU Yangshan, TANG Yingzi, LI Zhi, et al. Evaluation and validation of molecular markers associated with maximum tiller number and spike number per unit area of wheat in a RIL population[J]. Journal of Triticeae Crops, 2018, 38(1): 8-15.
[19] 金欣欣, 姚艳荣, 贾秀领, 等. 基因型和环境对小麦产量、品质和氮素效率的影响[J]. 作物学报, 2019, 45(4): 635-644.
JIN Xinxin, YAO Yanrong, JIA Xiuling, et al. Effects of genotype and environment on wheat yield, quality, and nitrogen use efficiency[J]. Acta Agronomica Sinica, 2019, 45(4): 635-644.
[20] 杨文平, 单长卷, 胡喜巧, 等. 土壤干旱对冬小麦拔节期叶片碳代谢的影响[J]. 河南农业科学, 2008, 37(9): 20-22, 26.
YANG Wenping, SHAN Changjuan, HU Xiqiao, et al. Effects of soil drought on carbon metabolism of winter wheat during jointing stage[J]. Journal of Henan Agricultural Sciences, 2008, 37(9): 20-22, 26.
Effects of soil moisture on leaf protective enzyme activities and yield of spring wheat cultivars with different drought resistance
ZHANG Hongzhi1, WANG Lihong1, SHI Jia1, KONG Depeng2, WANG Zhong1, GAO Xin1, LI Jianfeng1, WANG Chunsheng1, XIA Jianqiang1, FAN Zheru1, ZHANG Yueqiang1
(1. Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Agricultural Ministry/Xinjiang Engineering Technology Research Center of Crop Chemical Regulation/ Xinjiang Key Laboratory of Crop Biotechnology / Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; 2. Agricultural Technology Extension Master Station of Xinjiang Uygur Autonomous Region, Urumqi 830000, China)
Abstract:【Objective】 To study the effects of soil moisture on the yield of protective enzyme active agent in different drought-resistant varieties in the hope of providing theoretical basis for the breeding of drought-resistant spring wheat varieties.
【Methods】" Under field conditions, Xinchun 46 with strong drought resistance, Xinchun 37 with medium drought resistance and Xinchun 26 with weak drought resistance were used as experimental materials to study the effects of soil moisture on SOD, POD, CAT activities, MDA content and yield of flag leaves of spring wheat varieties with different drought resistance.
【Results】" With the increase of water deficit, the activities of SOD and CAT in flag leaves of wheat increased at flowering stage, and first increased and then decreased at filling stage.POD activity increased at flowering stage and then decreased, and increased at grout stage.MDA content showed an increasing trend.The SOD and POD activity of drought-resistant cultivar Xinchun 46 gt; drought-resistant medium cultivar Xinchun 37 gt; drought-resistant weak cultivar Xinchun 26 showed an opposite trend among varieties.The harvest panicle number, grain number per ear and yield decreased with the increase of water deficit.The harvest panicle number and grain number per ear of Xinchun 46 with strong drought resistance decreased less than those of Xinchun 37 and Xinchun 26 under limited irrigation and deficit irrigation, and the yield of Xinchun 46 under water deficit was higher than those of the other two varieties.
【Conclusion】" Under the condition of limited irrigation and deficit irrigation, the flag leaves of Xinchun 46 with strong drought resistance had higher SOD and POD enzyme activities, lower MDA content, and stronger active oxygen scavenging ability, which effectively delayed the senility of wheat plants.Compared with the cultivars with moderate drought resistance and weak drought resistance, the number of harvested ears and grain per ear decreased less, which was conducive to higher yield under the condition of water deficit.
Key words:spring wheat; soil moisture; drought-resistant varieties; protective activity; yield
Fund projects:Tianshan Youth Plan-Cultivation Project for Outstanding Young Scientific and Technological Talents of Autonomous Region \"Physiological and Ecological Basis Research on Water-saving Mechanism of High-Yield Spring Wheat Varieties in Xinjiang\"(2020Q009);Sub-project of Major Science and Technology Special Project of the Autonomous Region \"Research and Integrated Demonstration on Key Technologies of Meteorological Disaster Prevention and Control in Wheat Production in Xinjiang\"(2022B02001-3)
Correspondence author:FAN Zheru(1964-), male, from Gansu, researcher, research direction: wheat mutation breeding, (E-mail)fzr518@163.com
ZHANG Yueqiang(1976-), male, from Qitai, Xinjiang, researcher, research direction: wheat mutation breeding, (E-mail)zhangyqyhm@163.com