摘要:【目的】研究不同菌型棉蚜体内微生物种类与丰度的差异。【方法】通过HiSeq平台对不同菌型棉田棉蚜体内共生菌的16S rRNA基因V3~V4区进行高通量测序,分析绿盲蝽体内共生菌的种类与多样性。【结果】对照组与沙雷氏菌型、汉密尔顿菌型棉蚜的优势菌门均为变形菌门,相对物种丰度分别占97.42%、95.55%和92.78%。对照组与试验组的优势菌科均为肠杆菌科,但相对丰度有所差异,相对丰度分别占96.14%、81.285%和84.22%。汉密尔顿菌型棉蚜与沙雷氏菌型棉蚜其体内汉密尔顿菌属与沙雷氏菌属微生物丰度与对照组相比显著升高,分别占比77.40%和12.04%。【结论】棉田中含有沙雷氏菌与汉密尔顿菌的棉蚜其体内微生物丰度受到显著影响,其体内汉密尔顿菌属与沙雷氏菌属相对丰度显著上升。
关键词:16S rRNA;棉蚜;微生物;沙雷氏菌;汉密尔顿菌
中图分类号:S435.62文献标志码:A文章编号:1001-4330(2024)09-2277-08
0引 言
【研究意义】昆虫中含有丰富的微生物种类,可占昆虫生物量的1%~10%,两者之间有着密不可分的关系。昆虫体内的微生物可以直接影响宿主体内多种生命活动[1]。微生物可以影响宿主与其他个体之间的接触,微生物在昆虫体内有选择的为宿主的适应性提供帮助,增强其在个体之间的传播效率,这些微生物通过改变昆虫之间接触时的信号素决定昆虫配偶的选择或者与其他个体接触[2]。微生物还可以为宿主提供一些必需的氨基酸、维生素等营养物质,帮助宿主占据较高的生态地位,这些功能在刺吸式害虫胞内原生共生菌与宿主协同进化中发挥了重要作用[3,4]。微生物与昆虫之间存在着密切的关系。【前人研究进展】不同的昆虫与其携带的共生细菌存在多种互利关系。昆虫携带的共生菌分为初级共生菌和次级共生菌,又称孤雌共生菌。初级共生菌在昆虫的生长发育中发挥着重要作用,初级共生菌Buchnera与蚜虫共生,已成为蚜虫不可分割的一部分[5],而当蚜虫喂食缺乏VB的食物时,含有Buchnera的蚜虫比不含Buchnera的蚜虫更能满足正常生长发育的要求[6]。次生共生菌遍布宿主体腔、肠道和脂肪体的神经和肌肉组织,如黑蝇中的立克次体分布于整个体腔,以及中肠[7]。目前在蚜虫中发现的主要次生共生菌有9种,包括Hamiltonella defensa,Regiella insecticola,Serratia symbiotica,Rickettsia,Spiroplasma,Rickettsiella,PAXS Arsenophonus,Wolbachia pipientis[8-15]。汉密尔顿菌可以保护宿主免受寄生黄蜂的寄生[15]。次生共生细菌还可以改变宿主对不利环境的适应能力,从而保护其种群规模。例如,当豌豆蚜细胞在高温环境下含有沙雷氏菌和立克次体时,宿主对高温的敏感度明显低于不含该2种共生菌的豌豆蚜[16]。【本研究切入点】棉蚜(Aphis gossypii Glover),是一种杂食性农业害虫,属于半翅目(Hemiptera)蚜科(Aphididae),直接或间接危害寄主植物。当棉蚜吸取植物汁液获取养分时,将引起植物叶片枯萎甚至坏死,进而影响植物的生存,使植物的产量和品质下降[17]。棉蚜分泌物在植物上的分布也阻碍了光合作用和呼吸作用,也为真菌菌丝体的生长创造了条件,将导致棉花黑霉病的发生[18]。棉蚜还可以间接充当多种植物病毒传播的载体[19]。
在生物防治探索过程中,昆虫体内的共生菌与昆虫抗性密切相关[20-22]。当昆虫感染沃尔巴克氏体和立克次体时,这些生物体对杀虫剂的敏感性通常会增加[23]。然而,感染相同共生菌的昆虫对不同农药的抗药性不同。感染沃尔巴克氏体的粉虱对啶虫脒和多杀菌素的耐药性显着增加,但对百倍硫磷的耐药性无明显增加的趋势[24]。同样,立克次体侵染昆虫的功能增强了烟螨对啶虫脒的抗药性,但对地芬太尼的抗药性无变化[24,25]。
因此,棉花种植过程中需要积极防治棉蚜。由于棉蚜世代数多、每年发生次数多[20],因此生物防治是较好的选择。【拟解决的关键问题】通过HiSeq平台对不同菌型棉田棉蚜体内共生菌的16S rRNA基因V3~V4区进行高通量测序,测定微生物的类型和丰度,分析共生菌与微生物之间的群落结构关系,为害虫绿色生物防治策略提供参考。
1材料与方法
1.1材 料
棉蚜采集于中国农业科学院棉花研究所东场试验田棉花植株(安阳县,36° 5′34.8″ N,114° 31′47.19″ E)在人工智能光照培养箱((26±1)℃,L∶D=14∶10 h,RH = 70%±5%)中饲养,建立种群。根据文献特异性引物[26],采用QPCR方法检测单头棉蚜体内的共生菌的感染情况。沙雷氏菌[16,27,28]和汉密尔顿氏菌[29,30]在抵抗天敌的过程中发挥着重要作用。筛选出蚜虫体内优势菌为沙雷氏菌(B)、汉密尔顿菌(C)的棉蚜进行扩繁。
1.2方 法
1.2.1试验设计
设置对照组(A),对照组棉蚜为体内所有类型共生菌拷贝数均低于水的种群。
1.2.2DNA的提取
提取DNA之前,先用75%酒精和紫外灯对试验台进行消毒,准备好试剂和耗材备用。将收集好的蚜虫样本用75%酒精消毒30 s,使用灭菌后的ddH2O反复洗涤3次,将残余酒精完全冲洗干净,用移液器将剩余的ddH2O吸出,放入冰盒备用。蚜虫体表消毒完成后,使用Fast DNA@SPIN Kit for Soil试剂盒提取蚜虫样品的总DNA。2种菌型和对照组的蚜虫分别设置5个重复,以及1个对照均在生物安全柜中操作。
1.2.3数据库建立
用简并PCR引物341F(5′-ACTCCTACGGGGAGGGCAGAG-3′)和806R(5′-GGACTACHVGGGTWTCTAAT-3′)扩增细菌16S rRNA基因的可变区V3-V4。正向和反向引物均标记有Illumina适配器、pad和连接子序列。在含有30 ng模板、融合PCR引物和PCR主混合物的50 μL反应中进行PCR富集。PCR循环条件如下:94℃循环3 min,30次94℃循环30 s,56℃循环45 s,72℃循环45 s,最后在72℃条件下延长10 min,持续10 min。PCR产物用Amplexp珠纯化并在洗脱缓冲液中洗脱。库由安捷伦2100生物分析仪(安捷伦,美国)鉴定。在Illumina MiSeq平台(中国深圳BGI)上,按照Illumina的标准管道,使用经验证的文库进行测序,并生成2×300 bp配对末端读码。
1.3数据处理
对原始读取进行过滤,以去除适配器和低质量且不明确的碱基,通过快速长度调整短读取程序(FLASH,v1.2.11)[31]将成对的末端读取添加到标签中,以获得标签。使用UPARSE软件(v7.0.1090)[32]将这些标签聚集到截止值为97%的OTU中,并使用UCHIME(v4.2.40)[33]将嵌合序列与Gold数据库进行比较。之后,使用核糖体数据库项目(RDP)分类器v.2.2对OTU代表性序列进行分类,最小置信阈值为0.6,并由QIIME v1.8.0[34]在绿色基因数据库v201305上进行训练。使用USEARCH_global[35]将所有标签与OTU进行比较,得到每个样本的OTU丰度统计表。α和β多样性分别由MOTHUR(v1.31.2)[36]和Qime(v1.8.0)[34]在OTU水平上估算。样本聚类由QIIME(v1.8.0)[34]基于UPGMA进行。使用PICRUSt软件[37]预测KEGG和COG函数。用R软件包v3绘制了不同分类级别的条形图和热图。分别为4.1和R包“gplots”。
2结果与分析
2.116S rRNA基因测序结果概述
研究表明,共获得1 610 899条拼接序列,拼接序列的平均长度为253 bp。基于97%的物种相似性,将拼接标签聚类到OTU中,测序数量的质量和可信度。图1
对照组的Chao指数与ACE指数大部分低于试验组(反映样品中群落的丰富度),试验组的微生物丰度均高于对照组,测序深度已经基本覆盖到样品中所有的物种,不存在未被测序检测到的物种。对照组的Shannon指数均低于试验组,而Simpson指数均高于试验组,反映群落的多样性,不同菌型棉蚜群落微生物多样性高于对照种群。Coverage对所有样本的覆盖率均在99%以上。表1
2.2不同菌型棉蚜体内微生物在门水平上的群落组成
研究表明,对照组与试验组的优势菌门均为变形菌门,沙雷氏菌型、汉密尔顿菌型棉蚜种群中的优势菌门相对物种丰度占比分别为95.55%和92.78%,对照组的相对物种丰富度占97.42%。其中C组样本中,蓝藻门的相对丰度显著高于其他样本,占6.73%。图2
2.3不同菌型棉蚜体内微生物在科水平上的群落组成
研究表明,在科水平上,对照组与试验组的优势菌科均为肠杆菌科,但相对丰度有所差异,A、B、C三组中肠杆菌科的相对丰度分别占96.14%、81.285%和84.22%。且与试验组相比,对照组中除肠杆菌科外,其他菌门所占比例均低于2个试验组。图3
2.4不同菌型棉蚜体内微生物在属水平上的群落组成
研究表明,测序样本在属水平的差异性显著,其中,对照组、沙雷氏菌菌型的棉蚜种群优势菌属均为布赫纳氏菌属,相对丰度分别占84.17%、62.10%,汉密尔顿菌型棉蚜种群优势菌属为汉密尔顿菌属,物种丰富度占77.40%,布赫纳氏菌属的相对丰度仅占6.78%。B组中沙雷氏菌属物种丰富度显著上升,占12.04%。图4
2.5不同微生物型棉蚜体内微生物多样性比较
研究表明,不同菌型棉蚜体内微生物特有的微生物种类数量,A、B、C 3组样本中注释到的OTU种类数目分别为357、440和283,相同的OTU数量为151。沙雷氏菌型的棉蚜微生物种类数目最多,且样本中特有的OTU数量也是最高的一组,数量为135。汉密尔顿菌型的棉蚜微生物种类数量最少,OTU数量为283,且特有OTU数量为39,是所有样本中最少的。图5
对所有微生物群落进行PCA分析。样品中,微生物群落越相似,在坐标中距离越近,PC1所占比例为59.01%,PC2所占的比例为16.13%,两者总占比75.14%,PC1和PC2总微生物群落差异的75.14%。A和B 二组样品中的微生物群落相似度较高,和C组的微生物群落距离较远,存在显著差异。沙雷氏菌型棉蚜与对照组棉蚜微生物群落组成相似,其微生物群落结构和汉密尔顿菌型所构成的差异明显。图6
3讨 论
3.1
微生物普遍存在于昆虫体内,其中共生菌除了在昆虫的营养和发育中发挥重要作用外,共生菌还能产生一些生物活性化合物,保护宿主免受不利环境条件、捕食者或竞争对手的侵害[38],试验研究中,通过筛选不同菌型棉蚜并对含有沙雷氏菌、汉密尔顿菌型的棉蚜种群进行16S rRNA高通量测序分析,结果表明,含有该3类不同菌型的棉蚜与对照组相比,其优势菌门均为变形菌门。但所占比例略有差异,分别为97.6%、93.7%和90.6%。昆虫体内微生物的优势菌门以变形菌门或厚壁菌门为主。例如,鞘翅目的天牛Saperda vestita Say[39],双翅目的地中海实蝇Ceratitis capitata Wiedemann[40]等,与试验研究测序结果是一致的。在科水平上,对照菌群与3个样本的优势菌群菌为肠杆菌科。在属水平上对照组与沙雷氏菌型的棉蚜优势菌群均为布赫纳氏菌属,分别占比81.2%、64.5%,其优势菌属为汉密尔顿菌属,相对丰度为77.5%,与其他群体形成显著差异。
棉蚜体内的优势共生菌在不同地方具有很大差异,在我国北方,自然棉蚜种群中优势菌属为布赫纳氏菌属、杀雄菌属、汉密尔顿菌属和不动杆菌属[41]。布赫纳氏菌、杀雄菌、不动杆菌为优势菌,其他共生菌的相对丰度均在0.5%以下,但有些蚜虫体内的优势菌还包括汉密尔顿菌,如扁蚜科[42]。在南美地区,蚜虫种群中兼性共生菌结构组成包括沙雷氏属、汉密尔顿菌、杀雄菌[43]。在法国,蚜虫体内共生菌占主导地位的包括螺原体属、立克次氏体,布赫纳氏属,其他共生菌相对丰度小于2%[44]。在日本豌豆蚜中,共生菌群落组成为布赫纳氏属、沙雷氏属、R.insecticola(PAUS,U型)、立克次氏体、螺原体属[45]。试验的3个样本中,筛选出以汉密尔顿菌为优势菌的棉蚜种群其汉密尔顿菌属的相对丰度显著高于对照组,布赫纳氏菌属与对照相比显著下降,根据前人的研究结果,辛硫磷处理后的棉蚜微生物群落发生了变化,布赫纳氏菌相对丰度降低和汉密尔顿菌丰度升高[41],汉密尔顿菌对布赫纳氏菌丰度具有负面影响,与试验研究测序结果完全吻合。布赫纳氏菌是蚜虫体内的初级共生菌,与蚜虫的生命活动紧密相连,Buchnera共生菌能合成蚜虫必须的氨基酸,这些氨基酸是蚜虫生长发育与繁殖必不可少的[46],失去原生共生菌的蚜虫生长发育变迟缓,生殖能力降低甚至完全丧失[47]。
3.2
昆虫体内的共生菌对昆虫的抗性增强会发挥很大的作用,包括次级共生菌,其中汉密尔顿菌就是一个典型的例子,通过阻止寄生蜂的发育来保护蚜虫免受寄生蜂的侵扰[48]。感染Hamiltonella的小麦蚜虫对杀虫剂敏感性降低[49]。原因是低丰度的汉密尔顿菌感染可以通过增加宿主体的解毒酶活性,从而降低蚜虫对杀虫剂的敏感性[49],汉密尔顿氏菌感染的蚜虫抑制了植物中水杨酸和茉莉酸相关的防御途径,抑制多酚氧化酶和过氧化物酶的活性,参与植物防御反应[50]。
4结 论
4.1汉密尔顿菌型棉蚜与沙雷氏菌型棉蚜其体内汉密尔顿菌属与沙雷氏菌属微生物丰度与对照组相比显著升高,分别占比77.40%和12.04%。
4.2对照组与试验组的优势菌科均为肠杆菌科,但相对丰度有所差异,分别占96.14%、81.285%和84.22%。
4.3在门水平上,对照组与试验组的优势菌门均为变形菌门,对照组中优势菌门相对物种丰富度占97.42%,试验组沙雷氏菌型、汉密尔顿菌型棉蚜种群中的优势菌门相对物种丰度占比分别为95.55%和92.78%。
参考文献(References)
[1]Crotti E, Balloi A, Hamdi C, et al. Microbial symbionts: a resource for the management of insect-related problems[J]. Microbial Biotechnology, 2012, 5(3): 307-317.
[2] Engl T, Kaltenpoth M. Influence of microbial symbionts on insect pheromones[J]. Natural Product Reports, 2018, 35(5): 386-397.
[3] Baumann P. Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects[J]. Annual Review of Microbiology, 2005, (59): 155-189.
[4] Gündüz E A, Douglas A E. Symbiotic bacteria enable insect to use a nutritionally inadequate diet[J]. Proceedings Biological Sciences, 2009, 276(1658): 987-991.
[5] Von Dohlen C D, Moran N A. Molecular data support a rapid radiation of aphids in the Cretaceous and multiple origins of host alternation[J]. Biological Journal of the Linnean Society, 2000, 71(4): 689-717.
[6] Nakabachi A, Ishikawa H. Provision of riboflavin to the host aphid, Acyrthosiphonpisum, by endosymbiotic bacteria, Buchnera[J]. Journal of Insect Physiology, 1999, 45(1): 1-6.
[7] Fukatsu T, Hosokawa T. Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacoptapunctatissima[J]. Applied and Environmental Microbiology, 2002, 68(1): 389-396.
[8] Chen D Q, Purcell A H. Occurrence and transmission of facultative endosymbionts in aphids[J]. Current Microbiology, 1997, 34(4): 220-225.
[9] Tsuchida T, Koga R, Fujiwara A, et al. Phenotypic effect of “CandidatusRickettsiellaviridis,” a facultative symbiont of the pea aphid (Acyrthosiphonpisum), and its interaction with a coexisting symbiont[J]. Applied and Environmental Microbiology, 2014, 80(2): 525-533.
[10] Heyworth E R, Ferrari J. A facultative endosymbiont in aphids can provide diverse ecological benefits[J]. Journal of Evolutionary Biology, 2015, 28(10): 1753-1760.
[11] West S A, Cook J M, Werren J H, et al. Wolbachia in two insect host–parasitoid communities[J]. Molecular Ecology, 1998, 7(11): 1457-1465.
[12] Fukatsu T, Tsuchida T, Nikoh N, et al. Spiroplasma symbiont of the pea aphid, Acyrthosiphonpisum (Insecta: Homoptera)[J]. Applied and Environmental Microbiology, 2001, 67(3): 1284-1291.
[13] Jousselin E, CurdAcier A, Vanlerberghe-Masutti F, et al. Evolution and diversity of Arsenophonus endosymbionts in aphids[J]. Molecular Ecology, 2013, 22(1): 260-270.
[14] Chen D Q, Campbell B C, Purcell A H. A new rickettsia from a herbivorous insect, the pea aphid Acyrthosiphonpisum (Harris)[J]. Current Microbiology, 1996, 33(2): 123-128.
[15]N., A., Moran, et al. Evolutionary Relationships of Three New Species of Enterobacteriaceae Living as Symbionts of Aphids and Other Insects [J]. Applied and Environmental Microbiology, 2005, 71(6): 3302-3310.
[16] Montllor C B, Maxmen A, Purcell A H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphonpisum under heat stress[J]. Ecological Entomology, 2002, 27(2): 189-195.
[17] Slosser J E, Pinchak W E, Rummel D. A review of known and potential factors affecting the population dynamics of the cotton aphid[J]. Southwestern Entomologist, 1989.
[18] Jacobson R J, Croft P. Strategies for the control of Aphis gossypii glover (Hom.: Aphididae) with Aphidiuscolemaniviereck (Hym.: Braconidae) in protected cucumbers[J]. Biocontrol Science and Technology, 1998, 8(3): 377-387.
[19] Hullé M, Chaubet B, Turpeau E, et al. EncyclopAphid: a website on aphids and their natural enemies[J]. EntomologiaGeneralis, 2020, 40(1): 97-101.
[20] Balabanidou V, Grigoraki L, Vontas J. Insect cuticle: a critical determinant of insecticide resistance[J]. Current Opinion in Insect Science, 2018, (27): 68-74.
[21] Broderick N A, Raffa K F, Handelsman J. Midgut bacteria required for Bacillus thuringiensis insecticidal activity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(41): 15196-15199.
[22] Kikuchi Y, Hayatsu M, Hosokawa T, et al. Symbiont-mediated insecticide resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(22): 8618-8622.
[23] Liu X D, Guo H F. Importance of endosymbionts Wolbachia and Rickettsia in insect resistance development[J]. Current Opinion in Insect Science, 2019, (33): 84-90.
[24] Ghanim M, Kontsedalov S. Susceptibility to insecticides in the Q biotype of Bemisiatabaci is correlated with bacterial symbiont densities[J]. Pest Management Science, 2009, 65(9): 939-942.
[25] Kontsedalov S, Zchori-Fein E, Chiel E, et al. The presence of Rickettsia is associated with increased susceptibility of Bemisiatabaci (Homoptera: Aleyrodidae) to insecticides[J]. Pest Management Science, 2008, 64(8): 789-792.
[26] Zhang S, Su H H, Jiang W L, et al. Symbiotic microbial studies in diverse populations of Aphis gossypii, existing on altered host plants in different localities during different times[J]. Ecology and Evolution, 2021, 11(20): 13948-13960.
[27] Oliver K M, Degnan P H, Burke G R, et al. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits[J]. Annual Review of Entomology, 2010, (55): 247-266.
[28] Meseguer A S, Manzano-Marín A, Coeur dAcier A, et al. Buchnera has changed flatmate but the repeated replacement of co-obligate symbionts is not associated with the ecological expansions of their aphid hosts[J]. Molecular Ecology, 2017, 26(8): 2363-2378.
[29] Oliver K M, Russell J A, Moran N A, et al. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(4): 1803-1807.
[30] Russell J A, Moran N A. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures[J]. ProceedingsBiological Sciences, 2006, 273(1586): 603-610.
[31] Mago T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963.
[32] Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998.
[33] Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200.
[34] Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, (7): 335-336.
[35] Edgar R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460-2461.
[36] Schloss P D, Westcott S L, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541.
[37] Wilkinson T J, Huws S A, Edwards J E, et al. CowPI: a rumen microbiome focussed version of the PICRUSt functional inference software[J]. Frontiers in Microbiology, 2018, (9): 1095.
[38] Chaves S, Neto M, Tenreiro R. Insect-symbiont systems: from complex relationships to biotechnological applications[J]. Biotechnology Journal, 2009, 4(12): 1753-1765.
[39] Schloss P D, Delalibera I Jr, Handelsman J, et al. Bacteria associated with the guts of two wood-boring beetles: Anoplophoraglabripennis and Saperdavestita (Cerambycidae)[J]. Environmental Entomology, 2006, 35(3): 625-629.
[40] Behar A, Yuval B, Jurkevitch E. Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity[J]. Journal of Insect Physiology, 2008, 54(9): 1377-1383.
[41] Zhang S, Luo J Y, Wang L, et al. Bacterial communities in natural versus pesticide-treated Aphis gossypii populations in North China[J]. MicrobiologyOpen, 2019, 8(3): 652-657.
[42] Xu T T, Chen J, Jiang L Y, et al. Diversity of bacteria associated with Hormaphidinae aphids (Hemiptera: Aphididae)[J]. Insect Science, 2021, 28(1): 165-179.
[43] Arneodo J D, Ortego J. Exploring the bacterial microbiota associated with native South American species ofAphis(Hemiptera: Aphididae)[J]. Environmental Entomology, 2014, 43(3): 589-594.
[44] Gauthier J P, Outreman Y, Mieuzet L, et al. Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA[J]. PLoS One, 2015, 10(3): e0120664.
[45] Tsuchida T, Koga R, Shibao H, et al. Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphonpisum[J]. Molecular Ecology, 2002, 11(10): 2123-2135.
[46] Hansen A K, Moran N A. Aphid genome expression reveals host-symbiont cooperation in the production of amino acids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7): 2849-2854.
[47] Koga R, Tsuchida T, Fukatsu T. Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid[J]. ProceedingsBiological Sciences, 2003, 270(1533): 2543-2550.
[48] Oliver K M, Higashi C H. Variations on a protective theme: Hamiltonelladefensa infections in aphids variably impact parasitoid success[J]. Current Opinion in Insect Science, 2019, (32): 1-7.
[49] Li Q, Sun J X, Qin Y G, et al. Reduced insecticide susceptibility of the wheat aphid Sitobion miscanthi after infection by the secondary bacterial symbiont Hamiltonelladefensa[J]. Pest Management Science, 2021, 77(4): 1936-1944.
[50] Li Q, Fan J, Sun J X, et al. Anti-plant defense response strategies mediated by the secondary symbiont Hamiltonelladefensa in the wheat aphid Sitobion miscanthi[J]. Frontiers in Microbiology, 2019, (10): 2419.
Analyze the microbial diversity of cotton aphids with different bacterial types in cotton fields
AN Zhe1,2, NIU Ruichang2, ZHU Xiangzhen2, WANG Li 2, ZHANG Kaixin2, LI Dongyang2, JI Jichao2, NIU Lin2, GAO Xueke2, LUO Junyu2, CUI Jinjie2, MA Deying1
(1. Key Laboratory of Monitoring and Safety Prevention and Control of Agriculture and Forest Pests, College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; 2. State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang Henan 455000, China)
Abstract:【Objective】 To explore the differences of microbial species and abundance in different types of Aphis gossypii Glove.
【Methods】 "The V3-V4 region of 16SrRNA gene of symbiotic bacteria in different types of A. gossypii in cotton fields was sequenced by HiSeq platform, and the species and diversity of symbiotic bacteria in green bug bugs were analyzed.
【Results】 The dominant phylum of A. gossypii in the control group, serratia and Hamiltonella A. gossypii was Proteus, and the relative species abundance accounted for 97.42%, 95.55% and 92.78%, respectively. The dominant bacteria in the control group and the experimental group were Enterobacteriaceae, but the relative abundance was different, accounting for 96.14%, 81.285% and 84.22%, respectively. Compared with the control group, the microbial abundance of Hamiltonella and Serratia increased significantly, accounting for 77.40% and 12.04%, respectively.
【Conclusion】 "The microbial abundance of A. gossypii containing Serratia and Hamiltonella in cotton field is significantly affected, and the relative abundance of Hamiltonella and Serratia increased significantly.
Key words:16S rRNA; Aphis gossypii Glove; symbiotic bacteria; Hamiltonella spp.; Serratia spp.
Fund projects:The Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (ZB2021046)
Correspondence author:MA Deying(1968-), female, from Urumqi,Xinjiang, "professor, doctoral supervisor, research direction: green prevention and control of pests, (E-mail)mdynd@163.com
CUI Jinjie(1968-), male,researcher, doctoral supervisor, research direction: Agricultural insects and Pest Control, (E-mail)Cuijinjie@126.com
收稿日期(Received):2024-02-20
基金项目:中国农业科学院科技创新工程(ZB2021046)
作者简介:安哲(1996-),女,内蒙古乌兰察布人,硕士研究生,研究方向为农业昆虫与害虫防治,(E-mail)anzhe1206@126.com
通讯作者:马德英(1968-),女,新疆乌鲁木齐人,教授,博士,硕士生/博士生导师,研究方向为有害生物绿色防控,(E-mal)mdynd@163.com
崔金杰(1968-),男,研究员,硕士生/博士生导师,研究方向为农业昆虫与害虫防治,(E-mail)Cuijinjie@126.com