摘要:【目的】研究杀虫剂减量施用及添加助剂对红枣-小麦间作麦田蚜虫防效的影响,为杀虫剂减施提供科学依据。【方法】采用随机区组设计,定点调查各处理施药前后麦蚜的种群数量,评价5种常用杀虫剂减施及添加增效剂激健对红枣-小麦间作麦田蚜虫防效的影响。【结果】药后7 d,22%噻虫·高氯氟SC减量20%~40%对麦蚜的防效为91.88%~94.22%,22%氟啶虫胺腈SC减量20%~40%对麦蚜的防效为89.30%~94.11%,70%噻虫嗪WG减量20%~40%对麦蚜的防效为80.08%~83.82%,与常规用量相比均无显著差异。供试药剂减量20%~40%时添加增效剂激健对麦蚜的防效无显著影响。【结论】7 d内对麦蚜的控制达到较高水平,选择22%噻虫·高氯氟SC、22%氟啶虫胺腈SC或70%噻虫嗪WG减施40%人工喷雾即可。14 d内维持较好效果,5种杀虫剂减量施用20%~40%均可。在新疆南疆红枣-小麦间作田内人工喷雾防治小麦蚜虫时,可不添加。
关键词:红枣-小麦间作;杀虫剂;增效剂;减量施用;防治效果
中图分类号:S435.12文献标志码:A文章编号:1001-4330(2024)09-2257-11
0引 言
【研究意义】小麦是新疆南疆主要的粮食作物之一,目前播种面积超过50×104 hm2,播种面积和总产量均占新疆粮食作物的1/2[1]。以红枣-小麦间作的农林复合经济系统在新疆南疆应用可改善当地农业生态环境,提高农业生产经济效益[2]。小麦蚜虫在新疆南疆果树-小麦间作区发生严重,百株蚜量最高可达2 864.6头,因此,有效控制麦蚜种群数量和危害程度,是新疆南疆小麦植保的重点[3-4]。【前人研究进展】目前对于麦蚜类R-对策昆虫的防治方法较为单一[5-8]。若施药不及时、超剂量施用、安全间隔期不足、药剂轮换薄弱等,害虫抗药性增强[9-10]。【本研究切入点】农药添加增效剂可提高杀虫剂的杀虫活性[11-12],同时降低害虫抗药性发生风险[13]。因此,需研究探索农药减施+添加助剂对害虫的控制效果[14]。【拟解决的关键问题】研究以新疆南疆地区红枣-小麦间作系统内的麦蚜为试验对象,评价减量施用杀虫剂及添加增效剂对该系统内麦蚜的防治效果,为杀虫剂减施增效和红枣-小麦麦间作系统内科学防治蚜虫提供依据。
1材料与方法
1.1材 料
1.1.1试验地概况
试验地位于新疆喀什地区泽普县(37°57′ N~38°19′ N,76°52′ E~77°29′E),属于温带大陆性干旱气候,海拔1 215~1 490 m,年均气温11.40℃,年均降水量58.40 mm。模式为红枣-小麦间作,枣树行间距4 m、株距1.5 m。 于2019年10月3日播种小麦,杀虫剂施药时间是2020年5月19日,此时小麦处于灌浆期。试验田内麦蚜优势种为麦长管蚜(Sitobion avenae),并有少量麦无网长管蚜(Metopolophium dirhodum)和禾谷缢管蚜(Rhopalosiphum padi)发生。
1.1.2药剂及器械
供试药剂:P1为70%噻虫嗪水分散粒剂(上海生农生化制品股份有限公司);P2为70%吡虫啉水分散粒剂(拜耳作物科学(中国)有限公司);P3为22%噻虫·高氯氟悬浮剂(先正达南通作物保护有限公司);P4为50%吡蚜酮水分散粒剂(先正达南通作物保护有限公司);P5为22%氟啶虫胺腈悬浮剂(美国陶氏益农有限公司);助剂为激健(四川蜀峰作物科学有限公司)。
施药器械参数:选用台州市椒江博来塑料制品厂生产的3WBD-20型充电式喷雾器,产品规格8 A,压力0~0.48 MPa,喷雾速度0~0.35 L/min,电压DC I2 V,电流0~2 A,药筒材质为加厚PP材质。
1.2方 法
1.2.1试验设计
共设31个处理,3次重复,采用随机区组设计,小区面积30 m2,小区间设保护行。配药时采取二次稀释法,药液量为450 L/ hm2。表1
1.2.2测定指标
施药前调查蚜虫数量,每小区固定调查3点,每点用红毛线固定调查10株,记录蚜虫数量。施药后1、3、7和14 d分别调查并记录蚜虫数量,计算各处理虫口减退率和防效。
虫口减退率(%)=施药前虫数-施药后虫数施药前虫数×100;
防治效果(%)=处理区虫口减退率-空白对照区虫口减退率100-空白对照区虫口减退率虫口减退率×100。
1.3数据处理
用Shapiro检验验证数据的正态性,Levene检验验证方差齐次性。采用单因素方差分析验证杀虫剂处理、减量处理及增效剂对麦蚜防治效果的影响,F测验比较各处理间的统计学差异(P lt; 0.05),差异显著时,则用Duncans新复极差法进行多重比较。所有数据处理均使用R(Version 4.2.0)完成。
2结果与分析
2.1不同药剂处理对小麦的安全性
研究表明,施药后1、3、7和14 d,各药剂处理与清水对照处理在叶片颜色、大小及株高等无差异,试验药剂对小麦安全,无药害。
2.2不同种类杀虫剂常规用量对麦蚜的防效
研究表明,药后1 d,药剂种类对麦蚜的防效有显著影响(F4,10 = 33.85,P lt; 0.001)。50%吡蚜酮WG和22%噻虫·高氯氟SC的常规用量对麦蚜的防效较好,防效分别为77.30%和72.61%,显著高于70%噻虫嗪WG、70%吡虫啉WG和22%氟啶虫胺腈SC常规用量的防效。70%噻虫嗪WG和70%吡虫啉WG的常规用量对麦蚜的防效较好,防效分别为55.15%和56.29%,显著高于22%氟啶虫胺腈SC常规用量的防效(图1a)。
药后3 d,药剂种类对麦蚜的防效有显著影响(F4,10 = 7.44,P = 0.005)。22%噻虫·高氯氟SC的常规用量对麦蚜的防效为88.91%,显著高于70%噻虫嗪WG和70%吡虫啉WG常规用量的防效,与50%吡蚜酮WG和22%氟啶虫胺腈SC常规用量的防效之间无显著性差异。50%吡蚜酮WG和22%氟啶虫胺腈SC的常规用量对麦蚜的防效分别为86.74%和86.42%,显著高于70%吡虫啉WG常规用量的防效,与70%噻虫嗪WG常规用量的防效之间无显著差异(图1b)。
药后7 d,药剂种类对麦蚜的防效有显著影响。22%噻虫·高氯氟SC、50%吡蚜酮WG和22%氟啶虫胺腈SC的常规用量对麦蚜的防效分别为98.05%、94.55%和95.65%,显著高于70%吡虫啉WG和70%噻虫嗪WG常规用量的防效(图 1c)。
药后14 d,70%噻虫嗪WG、70%吡虫啉WG、22%噻虫·高氯氟SC、50%吡蚜酮WG和22%氟啶虫胺腈SC的常规用量处理对麦蚜的防效较好,防效为84.58%~98.32%,各药剂处理防效之间无显著差异(F4,10 = 11.41,P lt; 0.001)(图1d)。图1
2.3减量施用杀虫剂对麦蚜防效的影响
2.3.170%噻虫嗪水分散粒剂减量施用对麦蚜的防效
研究表明,药后1 d,70%噻虫嗪WG减量20%~40%对麦蚜的防效为42.61%~54.36%,与70%噻虫嗪WG常规用量的防效之间无显著差异(F3,8 = 1.55,P = 0.28)(图2a)。药后3 d,70%噻虫嗪WG减量20%~40%对麦蚜的防效为76.53%~78.29%,与70%噻虫嗪WG常规用量的防效之间无显著差异(F3,8 = 1.22,P = 0.36)(图2b)。药后7 d,70%噻虫嗪WG减量20%~40%对麦蚜的防效为80.08%~83.82%,与70%噻虫嗪WG常规用量的防效之间无显著差异(F3,8 = 2.03,P = 0.19)(图2c)。药后14 d,70%噻虫嗪WG减量20%~40%对麦蚜的防效为88.38%~93.26%,与70%噻虫嗪WG常规用量的防效之间无显著差异(F3,8 = 0.38,P = 0.77)(图2d)。图2
2.3.270%吡虫啉水分散粒剂减量施用对麦蚜的防效
研究表明,药后1 d,70%吡虫啉WG减量20%~40%对麦蚜的防效为37.36%~46.91%,显著低于70%吡虫啉WG常规用量的防效(F3,8 = 29.31,P lt; 0.001)(图3a)。药后3 d,70%吡虫啉WG减量20%~40%对麦蚜的防效为59.41%~70.76%,显著低于70%吡虫啉WG常规用量的防效(F3,8 = 43.45,P lt; 0.001)(图3b)。药后7 d,70%吡虫啉WG减量20%~40%对麦蚜的防效为69.43%~82.92%,显著低于70%吡虫啉WG常规用量的防效(F3,8 = 63.65,P lt; 0.001)(图3c)。药后14 d,70%吡虫啉WG减量20%~40%对麦蚜的防效为72.43%~84.80%,与70%吡虫啉WG常规用量的防效之间无显著差异(F3,8 = 0.81,P = 0.52)(图3d)。图3
2.3.322%噻虫·高氯氟悬浮剂减量施用对麦蚜的防效
研究表明,药后1 d,22%噻虫·高氯氟SC减量20%对麦蚜的防效为66.71%,与22%噻虫·高氯氟SC常规用量的防效之间无显著差异(F3,8 = 24.12,P lt; 0.001)(图4a)。22%噻虫·高氯氟SC减量30%~40%对麦蚜的防效为54.40%~57.68%,显著低于22%噻虫·高氯氟SC常规用量的防效(F3,8 = 24.12,P lt; 0.001)。药后3 d,22%噻虫·高氯氟SC减量20%~40%对麦蚜的防效为79.29%~86.76%,与22%噻虫·高氯氟SC常规用量的防效之间无显著差异(F3,8 = 3.37,P = 0.08)(图4b)。药后7 d,22%噻虫·高氯氟SC减量20%~40%对麦蚜的防效为91.88%~94.22%,与22%噻虫·高氯氟SC常规用量的防效之间无显著差异(F3,8 = 1.16,P = 0.38)(图4c)。药后14 d,22%噻虫·高氯氟SC减量20%~40%对麦蚜的防效为92.94%~98.59%,与22%噻虫·高氯氟SC常规用量的防效之间无显著差异(F3,8 = 0.52,P = 0.68)(图4d)。图4
2.3.450%吡蚜酮水分散粒剂减量施用对麦蚜的防效
研究表明,药后1 d,50%吡蚜酮WG减量20%~40%对麦蚜的防效为56.44%~65.70%,显著低于50%吡蚜酮WG常规用量的防效(F3,8 = 29.31,P lt; 0.001)(图5a)。药后3 d,50%吡蚜酮WG减量20%~40%对麦蚜的防效为71.33%~80.65%,显著低于50%吡蚜酮WG常规用量的防效(F3,8 = 12.95,P = 0.002)(图5b)。药后7 d,50%吡蚜酮WG减量20%~40%对麦蚜的防效为77.12%~89.62%,显著低于50%吡蚜酮WG常规用量的防效(F3,8 = 53.76,P lt; 0.001)(图5c)。药后14 d,50%吡蚜酮WG减量20%~40%对麦蚜的防效为78.68%~94.48%,与50%吡蚜酮WG常规用量的防效之间无显著差异(F3,8 = 1.02,P = 0.43)(图5d)。图5
2.3.522%氟啶虫胺腈悬浮剂减量施用对麦蚜的防效
研究表明,药后1 d,22%氟啶虫胺腈SC减量20%~40%对麦蚜的防效为22.98%~25.03%,显著低于22%氟啶虫胺腈SC常规用量的防效(F3,8 = 12.59,P = 0.002)(图6a)。药后3 d,22%氟啶虫胺腈SC减量20%~40%对麦蚜的防效为80.85%~85.26%,与22%氟啶虫胺腈SC常规用量的防效之间无显著差异(F3,8 = 1.44,P = 0.30)(图6b)。药后7 d,22%氟啶虫胺腈SC减量20%~40%对麦蚜的防效为89.30%~94.11%,与22%氟啶虫胺腈SC常规用量的防效之间无显著差异(F3,8 = 2.94,P = 0.10)(图6c)。药后14 d,22%氟啶虫胺腈SC减量20%~40%对麦蚜的防效为88.00%~96.80%,与22%氟啶虫胺腈SC常规用量的防效之间无显著差异(F3,8 = 0.42,P = 0.74)(图6d)。图6
2.4杀虫剂减施添加助剂对麦蚜防效的影响
研究表明,药后1 d(图7a)(F1,10 = 0.36,P = 0.56)、3 d(图7b)(F1,10 = 0.03,P = 0.87)和14 d(图7d)(F1,10 = 4.61,P = 0.06),70%噻虫嗪WG减量施用+添加助剂激健处理对麦蚜的防效高于无添加助剂激健处理的防效,但二者之间无显著差异。药后7 d(图7c),70%噻虫嗪WG减量施用+添加助剂激健处理对麦蚜的防效显著高于无添加助剂激健处理的防效(F1,10 = 6.80,P = 0.03)。图7
药后1 d(图8a)(F1,10 = 4.01,P = 0.07)、3 d(图8b)(F1,10 = 2.13,P = 0.18)、7 d(图8c)(F1,10 = 0.19,P = 0.67)70%吡虫啉WG减量施用+添加助剂激健处理对麦蚜的防效高于无添加助剂激健处理的防效,但二者之间无显著性差异。药后14 d(F1,10 = 0.18,P = 0.68)70%吡虫啉WG减量施用+添加助剂激健处理对麦蚜的防效低于无添加助剂激健处理的防效,但二者之间无显著差异。图8
药后1 d(图9a)(F1,10 = 1.56,P = 0.24)、3 d(图9b)(F1,10 = 0.98,P = 0.35)、7 d(图9c)(F1,10 = 0.19,P = 0.67)22%噻虫·高氯氟SC减量施用+添加增效剂激健处理对麦蚜的防效高于无添加增效剂激健处理的防效,但二者之间无显著差异。药后14 d(图9d)(F1,10 = 0.06,P = 0.81),22%噻虫·高氯氟SC减量施用+添加增效剂激健处理对麦蚜的防效低于无添加增效剂激健处理的防效,但二者之间无显著差异。图9
药后1 d(图10a)(F1,10 = 0.06,P = 0.81)、3 d(图10b)(F1,10 = 0.09,P = 0.77)、7 d(图10c)(F1,10 = 0.10,P = 0.76)和14 d(图10d)(F1,10 = 0.29,P = 0.60)50%吡蚜酮WG减量施用+添加增效剂激健处理对麦蚜的防效高于无添加增效剂激健处理的防效,但二者之间无显著差异。图10
药后1 d(图11a)(F1,10 = 0.004,P = 0.95)、3 d(图11b)(F1,10 = 0.61,P = 0.45)、7 d(图11c)(F1,10 = 0.63,P = 0.45)22%氟啶虫胺腈SC减量施用+添加增效剂激健处理对麦蚜的防效高于无添加增效剂激健处理的防效,但二者之间无显著差异。药后14 d(图11d)(F1,10 = 0.92,P = 0.36)22%氟啶虫胺腈SC减量施用+添加增效剂激健处理对麦蚜的防效低于无添加增效剂激健处理的防效,但二者之间无显著差异。图11
3讨 论
农药超剂量施用可造成农药残留超标、害虫抗药性增强[15-16]。李聪聪等[17]对防治玉米小斑病和弯孢叶斑病的杀菌剂进行室内筛选,发现25%丙菌唑EC、25%戊唑醇EC、40%氟硅唑EC等药剂减施50%时对上述病菌抑菌率均可达到100%;王宇等[18]发现高效氯氟氰菊酯减量30%并添加增效剂后,对亚洲玉米螟的防效比常规用量高;蒋欣东等[19]研究表明,在炔草酯、氯氟吡氧乙酸、氟吡·双唑酮、环吡·异丙隆减量30%与激健混施的情况下,对于麦田杂草具有较好的防除效果,产量及产量相关性状与常规用量无差异;王志慧等[20]研究表明,20%氯虫苯甲酰胺SC添加增效剂后对亚洲玉米螟的防效与常规用量相当;赵之德等[21]发现10%联苯菊酯EC的常规用量与减施用量、24%虫螨腈SC常规用量与减施用量对假眼小绿叶蝉的防效无显著差异。
4结 论
4.1
药后7 d,70%噻虫嗪WG、22%噻虫·高氯氟SC和22%氟啶虫胺腈SC减量20%~40%喷雾对麦蚜的防效分别可达80.08%~83.82%、91.88%~94.22%和89.30%~94.11%,与各自药剂的常规处理防效均无显著差异,药后14 d,各药剂20%~40%减施处理防效与常规剂量相比均无显著差异。
4.2
在新疆南疆红枣-小麦间作系统内,22%噻虫·高氯氟SC、22%氟啶虫胺腈SC、70%噻虫嗪WG、70%吡虫啉WG和50%吡蚜酮WG减量20%~40%人工喷雾可有效控制红枣-小麦间作麦田蚜虫为害。具体应根据田间蚜虫发生为害情况,合理减施及轮换使用杀虫剂,7 d内对麦蚜的控制达到较高水平,选择22%噻虫·高氯氟SC、22%氟啶虫胺腈SC或70%噻虫嗪WG减施40%人工喷雾即可。14 d内维持较好效果,5种杀虫剂杀虫剂减量施用20%~40%均可。
4.3
各杀虫剂减量施用+添加增效剂激健处理对麦蚜的防效与不添加增效剂激健处理的防效相比均无显著差异。因此在南疆红枣-小麦间作田内人工喷雾防治小麦蚜虫时,可不添加增效剂,在保证杀虫剂最大限度的被作物和靶标害虫吸收,提高对靶标害虫的防效的同时节约生产成本。
参考文献(References)
[1]郎新婷, 马惠兰. 新疆小麦生产效率及地区差异研究[J]. 中国农业资源与区划, 2016, 37(10): 127-133.
LANG Xinting, MA Huilan. Wheat production efficiency and region differences in Xinjiang[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(10): 127-133.
[2] 王宝驹, 李隆, 李鲁华, 等. 南疆枣麦间作系统中根长密度、根表面积密度分布特征[J]. 西北农业学报, 2014, 23(3):67-73.
WANG Baoju, LI Long, LI Luhua, et al. Characterization of root length density and root surface area density in jujube/wheat intercropping "in southern Xinjiang[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(3):67-73.
[3] 王锁牢, 李广阔, 高海峰, 等. 果麦间作模式下麦田麦长管蚜种群动态研究[J]. 新疆农业科学, 2014, 51(8): 1463-1467.
WANG Suolao, LI Guangkuo, GAO Haifeng, et al. Effects of walnut-wheat or jujube-wheat intercropping on the population dynamics of Sitobion avenae[J]. Xinjiang Agricultural Sciences, 2014, 51(8): 1463-1467.
[4] 李广阔. 核桃—小麦间作对小麦主要病虫草害发生影响研究[D]. 北京: 中国农业大学, 2018.
LI Guangkuo. Effect of Walnut-Wheat Intercropping on the Occurrence of Main Wheat Pests[D]. Beijing: China Agricultural University, 2018.
[5] 史雪岩, 李红宝, 王海光, 等. 我国小麦病虫草害防治农药减施增效技术研究进展[J]. 中国农业大学学报, 2022, 27(3): 53-62.
SHI Xueyan, LI Hongbao, WANG Haiguang, et al. Progresses of pesticide reduction techniques in wheat production and the synergistic effects on the prevention and control of wheat pests[J]. Journal of China Agricultural University, 2022, 27(3): 53-62.
[6] 韦宁, 林璐璐, 何贤芳, 等. 8种药剂对小麦蚜虫的生物活性测定及田间药效试验[J]. 农药, 2020, 59(12): 918-920, 924.
WEI Ning, LIN Lulu, HE Xianfang, et al. Laboratory bioassay and field efficacy test of eight pesticides on wheat aphids[J]. Agrochemicals, 2020, 59(12): 918-920, 924.
[7] 陈博聪, 张燕宁, 刘同金, 等. 噻虫嗪对田间麦蚜种群防控效果与残留消减动态的关系[J]. 植物保护, 2019, 45(1): 98-103.
CHEN Bocong, ZHANG Yanning, LIU Tongjin, et al. Relationships between the control effect on aphid populations and the residue decline dynamics of thiamethoxam in wheat fields[J]. Plant Protection, 2019, 45(1): 98-103.
[8] 董文阳, 张慧慧, 陈安琪, 等. 我国甘肃和青海地区麦蚜田间种群对5种杀虫剂的抗性监测[J]. 农药, 2020, 59(7): 532-536.
DONG Wenyang, ZHANG Huihui, CHEN Anqi, et al. Resistance levels to five insecticides of wheat aphid field populations from some regions of Gansu and Qinghai Province of China[J]. Agrochemicals, 2020, 59(7): 532-536.
[9] 聂晓, 刘伟, 范洁茹, 等. 小麦化肥农药减施集成技术综合效益评价[J]. 植物保护, 2021, 47(2): 95-102, 108.
NIE Xiao, LIU Wei, FAN Jieru, et al. Comprehensive evaluation of the benefits of integrated technologies for reducing fertilizers and pesticides in wheat production[J]. Plant Protection, 2021, 47(2): 95-102, 108.
[10] 张凯, 冯推紫, 熊超, 等. 我国化学肥料和农药减施增效综合技术研发顶层布局与实施进展[J]. 植物保护学报, 2019, 46(5): 943-953.
ZHANG Kai, FENG Tuizi, XIONG Chao, et al. Top design and progress in research and development of synthesis technique for reduction and synergy of chemical fertilizers and pesticides in China[J]. Journal of Plant Protection, 2019, 46(5): 943-953.
[11] 王潇楠, 王思威, 常虹,等. 两种喷雾增效剂对噻虫嗪防治豇豆上蓟马的减施增效作用[J]. 农药学学报, 2022, 24(2):368-375.
WANG Xiaonan, WANG Siwei, CHANG Hong, et al. Synergistic effect of two spray adjuvants on thiamethoxam in the control of Megalurothrips usitatus in cowpea[J]. Chinese Journal of Pesticide Science, 2022, 24(2):368-375.
[12] 沈燕, 朱宏, 余向阳, 等. 油助剂和淀粉源助剂对噻嗪酮和烯啶虫胺在水稻上残留的影响[J]. 农药学学报, 2020, 22(2): 370-377.
SHEN Yan, ZHU Hong, YU Xiangyang, et al. Effect of oil adjuvant and starch adjuvant on residues of buprofezin and nitenpyram in rice[J]. Chinese Journal of Pesticide Science, 2020, 22(2): 370-377.
[13] 岳德成, 胡冠芳, 李青梅, 等. 背负式静电喷雾器静电喷施对2种玉米田除草剂的减量效应[J]. 植物保护, 2019, 45(4): 243-249.
YUE Decheng, HU Guanfang, LI Qingmei, et al. The decrement effect of two maize herbicides under the condition of electrostatic spray by knapsack electrostatic sprayer[J]. Plant Protection, 2019, 45(4): 243-249.
[14] 丁新华, 王小武, 蒋旭东, 等. 2种增效剂对春玉米田除草剂的减量增效作用[J]. 植物保护, 2022, 48(1): 297-304.
Ding Xinhua, Wang Xiaowu, Jiang Xudong, et al. Decrement and synergistic effect of two synergist on herbicides in spring corn field[J]. Plant Protection, 2022, 48(1): 297-304.
[15] 张婉玉, 魏君英. 我国农药化肥减量效应与推进对策[J]. 北方园艺, 2021(18): 167-172.
ZHANG Wanyu, WEI Junying. Research on the reducing effect of pesticides and fertilizers in my country and the promoting countermeasures[J]. Northern Horticulture, 2021(18): 167-172.
[16] 胡贵磊, 苏栩, 汪耿, 等. 除虫菊素和苦参碱复配对麦二叉蚜的联合生物活性及田间药效[J]. 农药, 2021, 60(11): 836-839.
HU Guilei, SU Xu, WANG Geng, et al. Co-bioactivity of pyrethrins with matrine insecticides against Schizaphis graminum on wheat and field efficacy[J]. Agrochemicals, 2021, 60(11): 836-839.
[17] 李聪聪, 王亚娇, 栗秋生, 等. 防治玉米叶斑病高效药剂筛选及药剂减施增效技术[J]. 植物保护, 2022, 48(3): 342-348.
LI Congcong, WANG Yajiao, LI Qiusheng, et al. Screening of high effective fungicides for controlling maize leaf spot and the techonology for fungicide reduction and synergism[J]. Plant Protection, 2022, 48(3): 342-348.
[18] 王宇, 王克勤, 刘兴龙. 减施化学杀虫剂对亚洲玉米螟的防控效果[J]. 黑龙江农业科学, 2022, (1): 34-39.
WANG Yu, WANG Keqin, LIU Xinglong. Control effects of reduced application of chemical insecticides on Asiatic corn borer[J]. Heilongjiang Agricultural Sciences, 2022, (1): 34-39.
[19] 蒋欣东, 康晓慧, 陈万权, 等. 除草剂减量与激健混施对麦田杂草防效及产量特征影响[J]. 江西农业大学学报, 2021, 43(1): 33-41.
JIANG Xindong, KANG Xiaohui, CHEN Wanquan, et al. Effect of herbicide reduction and vigorous stimulant application on weed control and wheat yield characteristics in wheat field[J]. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(1): 33-41.
[20] 王志慧, 丁新华, 贾尊尊, 等. 基于增效剂与杀虫剂协同作用的玉米螟超低量喷雾防治技术[J]. 新疆农业科学, 2020, 57(2): 311-318.
WANG Zhihui, DING Xinhua, JIA Zunzun, et al. An ultra low spray control technique for corn borer based on synergist and insecticide[J]. Xinjiang Agricultural Sciences, 2020, 57(2): 311-318.
[21] 赵之德, 李嘉慧, 梁涛, 等. 联苯菊酯、溴氰菊酯、虫螨腈对茶园害虫的田间防效[J]. 农药, 2019, 58(2):130-135.
ZHAO Zhide, LI Jiahui, LIANG Tao, et al. Differences in field control efficacy treated with two concentrations of bifenthrin, deltamethrin, chlorfenapyr in tea plantations[J]. Agrochemicals, 2019, 58(2):130-135.
The control effect of reduced pesticides application and adjuvant addition on wheat aphids in jujube-wheat intercropping pattern
SHEN Yuyang, HONG Gaojie2, FAN Guiqiang3, CHEN Li1, LEI Junjie3, LI Guangkuo1, GAO Haifeng1
(1.Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis / Institute of Plant Protection,Xinjiang Academy of Agricultural Sciences,Urumqi 830091,China;2. Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310022, China; 3. Institute of Food Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)
Abstract:【Objective】 This research aims to evaluate the effectiveness of reduced pesticides application and adjuvant addition in the control of wheat aphids in jujube-wheat intercropping, and to provide a theoretical basis for the scientific use and dosage reduction of pesticides to control the desease.
【Methods】 A randomized block design was used to conduct a fixed plant surveyJijian to verify the effects of different reduction proportions of five commonly used pesticides and adjuvant addition on the control effect of wheat aphids in jujube-wheat intercropping system.
【Results】 7 d after pesticides application, the control effects against wheat aphids of 20%-40% reduction dosage treatments of 22% thiamethoxam-lambda-cyhalothrin SC, 22% sulfoxaflor SC and 70% thiamethoxam WG were 91.88%-94.22%, 89.30%-94.11% and 80.08%-83.82%, respectively, which had no significant difference compared to the corresponding regular dosage treatment. The control effect of 20%-40% reduction dosage treatments within adjuvant Jijian against wheat aphids were not significantly improved compared with the treatments without any adjuvants.
【Conclusion】 If pursuing a relative higher control effects within 7 d, 40% reduction dosages of 22% thiamethoxam-lambda-cyhalothrin SC, 22% sulfoxaflor SC and 70% thiamethoxam WG can be chosen to spray manually. To maintain a better control effect within 14 d, 20%-40% reduction dosages of tested five pesticides can achieve the purpose. When manually spraying pesticides to control wheat aphids in jujube-wheat intercropping fields in South Xinjiang, adjuvant Jijian adding is not necessary.
Key words:jujube-wheat intercropping; pesticides; adjuvant; reduced application; control effect
Fund projects:Ministry of Agriculture and Rural Affairs / Zhejiang Provincial Key Laboratory of Plant Protection Biotechnology Open Fund; Open Fund for Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis,Ministry of Agriculture and Rural Affairs, China (KFJJ202002); Key Research and development projects of Xinjiang Uygur Autonomaus Region (2021B02002-1);Earmarked Fund for CARS (CARS-03-88); Science and Technology Commissioner Project “Integration and Demonstration of Key Prevention and Control Technologies for Green and High Yield Wheat and Pesticide Reduction and Efficiency Increase”; Stable Support Projects for Agricultural Science and Technology Innovation(xjnkywdzc-2022004)
Correspondence author:LI Guangkuo (1973-), male, from Henan,researcher, disease, research direction: pest and weed control of crops,(E-mail)1448832764@qq.com
GAO Haifeng(1983-), male,from Henan, researcher, Ph.D., research direction: integrated control of diseases, pests and weeds for grain crops, (E-mail)ghf20044666@163.com
收稿日期(Received):2014-02-19
基金项目:农业部/浙江省植保生物技术重点实验室开放基金;农业部西北荒漠绿洲作物有害生物综合治理重点实验室项目(KFJJ202002);新疆维吾尔自治区重点研发计划项目(2021B02002-1);现代农业产业技术体系(CARS-03-88);新疆维吾尔自治区科技特派员项目“小麦绿色丰产及农药减施增效关键防控技术集成与示范”;农业科技创新稳定支持项目(xjnkywdzc-2022004)
作者简介:沈煜洋(1993-),男,甘肃人,硕士研究生,研究方向为粮食作物病虫草害防治,(E-mail)sansirosoul@163.com
通讯作者:李广阔(1973-),男,河南人,研究员,硕士生导师,研究方向为农作物病虫草害防治,(E-mail)1448832764@qq.com高海峰(1983-),男,河南人,研究员,博士,研究方向为粮食作物病虫草害防治,(E-mail)ghf20044666@163.com