不同氮肥配施腐殖酸策略对冬小麦光合特性及产量的影响

known 发布于 2025-07-28 阅读(370)

摘 要:【目的】探究不同氮肥种类与土壤调理剂配施策略对小麦光合特征、产量及产量构成的影响,为新疆小麦氮肥及腐殖酸合理配施提供参考。

【方法】在大田滴灌条件下,以冬小麦品种伊农22号为对象,设置不施氮肥(CK)、基施18-磷酸二铵+追施尿素(T1)、基施16-磷酸二铵+追施尿素(T2)、基施18-磷酸二铵+追施腐殖酸尿素(T3)和基施16-磷酸二铵+追施腐殖酸尿素(T4)5个处理,探究不同施肥策略对冬小麦生物量、叶面积指数、SPAD值、净光合速率、产量及产量构成的影响。

【结果】各施氮处理相对CK处理显著提高了冬小麦地下部生物量、地上部生物量、光合能力、产量及产量构成,同一基施条件下追施腐殖酸尿素相对追施尿素处理间差异显著,而同一追施条件下基施不同磷酸二铵处理间存在差异但不显著。其中施氮处理较对照处理叶面积指数、SPAD值、净光合速率分别提高了4.88%~32.43%、18.31%~36.36%和13.31%~42.17%,表现为T4gt;T3gt;T1gt;T2gt;CK;施氮处理较对照处理穗数、穗粒数和千粒重分别提高了23.99%~32.04%、10.16%~15.29%和3.95%~5.64%,表现为T4gt;T3gt;T2gt;T1gt;CK;T3处理较T1处理地下部生物量、地上部生物量、产量分别提高了13.32%、3.61%和1.77%,T4处理较T2分别提高了9.84%、7.14%和5.81%,所有处理中T4处理效果最优。

【结论】施氮有利于冬小麦的生长发育,可显著提高冬小麦生物量、光合能力和产量。拔节期追施腐殖酸尿素效果优于基施不同类型磷酸二铵,其中T4处理(基施16-磷酸二铵+追施腐殖酸尿素)提升冬小麦生物量、光合能力和产量效果最佳。

关键词:氮肥;腐殖酸;冬小麦;光合特性;产量

中图分类号:S512.1 ""文献标志码:A ""文章编号:1001-4330(2025)01-0060-08

收稿日期(Received):

2024-08-11

基金项目:

新疆维吾尔自治区重点研发计划专项(2022B02015-2);伊犁哈萨克自治州科技计划项目(YZ2022A006);新疆现代农业小麦产业技术体系(XJARS-01)

作者简介:

马林(1993-),男,甘肃人,助理研究员,研究方向为小麦遗传育种与栽培,(E-mail)1330846112@qq.com

通信作者:

孙娜(1982-),女,吉林人,高级农艺师,研究方向为小麦遗传育种,(E-mail)Sna18509993321@163.com

雷钧杰( 1972- ) ,男,甘肃古浪人,研究员,博士,硕士生导师,研究方向为小麦高产高效栽培,(E-mail)leijunjie@souhu.com

0 引 言

【研究意义】2023年中国小麦年产量约为1.34×108 t[1-2]。伊犁河谷是我国新疆主要的小麦种植区之一,土壤多为灌耕灰漠土,年降水量相对较少,农田氮肥施用过量则影响作物产量提升[3-6]。因此,在稳产、增产的前提下提高氮肥利用率,进而减少氮肥的过量施用,对促进农业可持续发展有重要意义。【前人研究进展】氮是作物生长的必需元素,化学氮肥的投入是现代农业生产中提高作物产量的主要手段[7-8]。氮肥与土壤调理剂配施是提高氮素生物有效性的可行途径[9]。研究发现,施用腐殖酸能够修复土壤污染、降低土壤容重并调节土壤pH值,维持较高的土壤肥力,调节植物养分分配途径,增加营养器官的养分比例,提升光合效率及干物质积累量,进而提升作物产量[10-15]。尿素配施腐殖酸促进了氮素向籽粒中运移,显著提高植株氮吸收、施肥氮收获指数(HIN)和氮素回收效率[16],进而提高穗粒数和千粒重,提高小麦产量[9]。【本研究切入点】随着不同类型土壤调理剂的出现,目前研究主要集中于土壤调理剂对土壤养分及作物产量的影响,而探究不同氮肥种类与土壤调理剂配施策略对小麦光合特征、产量及产量构成鲜见报道。需探究不同氮肥种类与土壤调理剂配施策略对小麦光合特征、产量及产量构成的影响。【拟解决的关键问题】在大田滴灌条件下,以冬小麦品种伊农22号为对象,设置不施氮肥对照、两种磷酸二铵基施策略配合两种氮肥(尿素和腐殖酸尿素)追施共5个处理,测定不同施肥策略对小麦光合参数、生物量、产量及产量构成的影响,为新疆小麦氮肥及腐殖酸合理配施提供参考。

1 材料与方法

1.1 材 料

磷酸二铵(湖北泰盛化工有限公司):N-P2O5-K2O比例为18-46-0,记为18-磷酸二铵;

磷酸二铵(云南云天化国际化工股份有限公司):N-P2O5-K2O比例为16-43-0,记为16-磷酸二铵;

尿素(河南心连心化肥有限公司):含总氮≥46%;

腐殖酸尿素(河南心连心化肥有限公司):含总氮≥46%;

重过磷酸钙(云南兴昆化工有限公司):P2O5≥44%;

硫酸钾(史丹利农业集团股份有限公司):K2O≥44%。

试验于2021年10月~2022年7月在伊犁哈萨克自治州农业科学研究所试验地进行(43°94′N,81°38′E)。供试品种为自育中强筋小麦品种伊农22号,试验地前茬为胡麻。试验地土壤pH值 8.0,全氮0.35 g/kg,碱解氮45 mg/kg,速效磷21 mg/kg,速效钾188 mg/kg。

1.2 方 法

1.2.1 试验设计

采用随机区组设计,设置不施氮肥(CK)、基施18-磷酸二铵+追施尿素(T1)、基施16-磷酸二铵+追施尿素(T2)、基施18-磷酸二铵+追施腐殖酸尿素(T3)和基施16-磷酸二铵+追施腐殖酸尿素(T4)5个处理,每个处理设置3次重复。除CK不施氮肥外,各处理氮、磷、钾总养分投入一致,N:280 kg/ha,P2O5:180 kg/ha,K2O:31.5 kg/ha,氮肥基追比为1∶1,磷、钾肥全部基施,以尿素、硫酸钾和重过磷酸钙补足不同基施处理N、P2O5、K2O,追施养分于小麦拔节期一次性投入。试验小区长5 m,宽10 m,各小区间隔1 m。表1

1.2.2 测定指标

1.2.2.1 小麦旗叶面积指数

叶面积测定采用长宽系数法(长×宽×0.76),选取长势一致的主茎穗100株挂牌标记,小麦开花期开始,分别于0、7、14、21和28 d选取已标记植株10株,量取鲜叶长、宽并称重,计算叶面积、叶面积指数。

1.2.2.2 叶绿素相对含量(SPAD值)

小麦开花期开始,分别于0、7、14、21和28 d用SPAD-502型叶绿素计测定20株已标记植株的旗叶SPAD值,取平均值。

1.2.2.3 旗叶净光合速率(Pn)

采用美国CIRAS-3便携式光合作用测定系统测定,选择天气晴朗、无风的天气于正午11:00至12:00测定,从开花期开始,分别于0、7、14、21和28 d测定。

1.2.2.4 生物量

在成熟期,从各小区采集20株长势相近的小麦全株,于第一节间处分割为地上部与地下部,实验室杀青后烘干、称重,测定地上部干重和地下部干重。

1.2.2.5 测 产

小麦成熟期时,每个小区收获1 m2测定产量,选取1 m双行植株用于测定穗数、穗粒数、千粒重及产量。

1.3 数据处理

采用Excel 2016进行数据整理,SPSS 16.0进行统计分析,Origin 2018作图。

2 结果与分析

2.1 不同施肥策略对冬小麦叶面积指数的影响

研究表明,花后0~28 d,各处理冬小麦叶面积指数呈下降趋势,各处理叶面积指数大小关系为T4gt;T3gt;T1gt;T2gt;CK,施氮处理均显著高于CK处理。基施策略相同时,T4处理叶面积指数显著高于T2处理,28 d后相对T2处理提高23.5%,T3处理叶面积指数在0~14 d显著高于T1处理,14 d后差异不显著,28 d后相对T1处理提高5.6%;追施策略相同时,T1处理叶面积指数高于T2处理,T4处理叶面积指数高于T3处理,但整体上差异不显著。同等施肥量下,腐殖酸尿素可以提高小麦花后叶面积指数。图1

2.2 不同施肥策略对冬小麦SPAD值的影响

研究表明,不同施肥策略下冬小麦SPAD值整体呈现相似的趋势,0~14 d缓慢上升,14 d后开始降低。SPAD值排序为T4gt;T3gt;T1gt;T2gt;CK,各施氮显著大于CK处理。0~14 d内,T4处理SPAD值高于T3处理,显著高于T1、T2处理,14 d时T4分别比T1、T2、T3处理提高了3.1%、3.5%和2.1%,T1处理SPAD值高于T2处理,但差异不显著。14 d后T4处理SPAD值显著高于T3处理,T3处理显著高于T1、T2处理,T1、T2处理差异不显著。28 d后T3处理SPAD值较T1、T2处理分别提高了5.1%和6.6%,T4处理较T1、T2处理分别提高了7.0%和8.2%。追施腐殖酸尿素提高了小麦旗叶SPAD值,有利于小麦旗叶进行光合作用。图2

2.3 不同施肥策略对冬小麦净光合速率(Pn)的影响

研究表明,0~28 d内,不同施肥策略下冬小麦净光合作用均呈先缓后急的下降趋势,各施氮处理净光合速率显著大于CK处理,具体为T4gt;T3gt;T1gt;T2gt;CK。0~14 d内,T4处理净光合速率显著大于T1、T2和T3处理;T3处理净光合速率显著大于T2处理,与T1处理差异不显著;T2处理净光合速率大于T1,但同样未达显著水平。14 d后T3、T4处理净光合速率显著大于T1、T2处理,T1与T2处理、T3与T4处理间差异不显著。同叶面积指数和SPAD值规律相似,相对追施尿素,追施腐殖酸尿素显著提升了冬小麦旗叶净光合速率,提升了小麦干物质积累潜力。图3

2.4 不同施肥策略对冬小麦生物量的影响

研究表明,不同施肥策略下冬小麦地上部与地下部生物量均表现为T4gt;T3gt;T2gt;T1gt;CK,施氮处理显著大于不施氮处理。T4处理地上部生物量显著大于T1、T2和T3处理,分别提高了8.2%、7.1%和4.4%,T1、T2、T3处理间差异不显著。T4处理地下部生物量显著大于T1、T2处理,分别提高了17.8%和9.9%,T3、T4处理间差异不显著。追施腐殖酸尿素可提高小麦地上部与地下部生物量,其中基施18-磷酸二铵+追施腐殖酸尿素效果最优。图4

2.5 不同施肥策略对冬小麦产量及产量构成的影响

研究表明,冬小麦产量构成中穗数、穗粒数与千粒重均表现为T4gt;T3gt;T2gt;T1gt;CK,施氮处理显著大于不施氮处理。其中,施氮处理间千粒重无显著差异,T4处理穗数、穗粒数显著大于T1、T2处理,T1、T2、T3处理间差异不显著。T3、T4处理显著大于T1、T2处理,最大增产幅度到5.9%。同等施肥量下,追施腐殖酸尿素可提高小麦穗数、穗粒数和千粒重,进而提高小麦产量;相对基施18-磷酸二铵,基施16-磷酸二铵也可提高小麦穗数、穗粒数、千粒重两者提升效果无显著差异。表2

3 讨 论

3.1 不同施肥策略对小麦生物量及产量构成的影响

根系是作物吸收水分、氮素等养分的主要器官,在作物生长发育中起着重要作用,其显著影响作物地上部生物量及根系养分含量[17]。相对不施氮处理,施氮处理会促进小麦根系发育,显著提高小麦地上部与地下部生物量、产量、穗数和穗粒数,但施氮处理间差异不显著[18]。缑培欣等[19]发现,4种施肥处理相对不施肥处理显著提高小麦产量,但4种施肥处理间千粒重差异不显著。试验结果与前人研究结果相似,4种施氮处理较对照显著提高了冬小麦地下部生物量、地上部生物量、产量、穗数、穗粒数和千粒重,但施肥处理间千粒重差异不显著。追施处理相同时,基施16-DAP处理产量、穗数和穗粒数略高于基施18-DAP,但两者差异不显著,可能与基施肥料的比例相关。磷酸二铵作为一种速效肥料,其N养分在土壤中的挥发速度与土壤pH值密切相关,在碱性土壤中会加速N的挥发,而尿素在土壤中需经脲酶催化水解为铵态氮,然后逐步被植物根系吸收或挥发[20-21]。试验中16-DAP与18-DAP亩施量均为25 kg,但由于基施处理N投入量一致,且16-DAP的N含量较低,因此16-DAP处理基施中尿素比例高于18-DAP,保持了较高的N有效性。腐植酸尿素既可以显著提高冬小麦有效穗数、千粒质量等产量构成要素,显著提高籽粒产量,也能提高其各部位氮素质量分数,促进冬小麦对氮素的累积[22-23]。与前人结果相似,试验基施处理相同时,腐殖酸尿素处理地下部生物量、地上部生物量、产量、穗数和穗粒数显著高于尿素处理。于正国等[24]研究发现,腐植酸尿素较对照尿素可显著减缓尿素水解,提高培养后的土壤矿质态氮含量,腐植酸尿素的氨挥发累积氮量可降低6.7%~61.7%,可显著抑制尿素水解。腐殖酸含有多个官能团,每个官能团活性较高,可吸附更多的铵离子供植物根系吸收利用,且抑制尿素水解、降低N挥发损失,进而提高了氮肥表观利用率[24-26]。施氮可有效提升冬小麦地下部与地上部生物量产量,基施腐殖酸对冬小麦产量及产量构成的影响大于追施DAP种类间的影响。

3.2 不同施肥策略对小麦光合性能的影响

叶面积指数、SPAD值和净光合速率在一定程度上能够表示小麦叶源强度,适量施氮可提高小麦的叶面积指数、SPAD值和光合速率[27]。聂峥睿等研究发现,同一温度下,施氮量0~225 kg/hm2随着施氮量的增加,小麦叶面积指数和净光合速率均呈增加趋势,施氮量继续增加则呈现下降趋势[28]。在高氮土壤中,不同氮肥处理下花后0~21 d旗叶净光合速率呈先增加后下降趋势[29]。曲文凯等[30]探究施氮对滴灌冬小麦光合生理的影响,结果表明旗叶Pn和SPAD值在花后0~7 d呈上升趋势,7~28 d呈持续下降趋势。试验中各处理SPAD值在0~28 d呈先缓慢提升后迅速下降趋势,Pn和叶面积指数则呈先缓后急的下降趋势,大致与前人结论相吻合。追施处理一致时,基施不同DAP处理间光合参数差异整体不显著,但基施处理一致时,追施腐殖酸尿素处理光合参数显著优于追施尿素处理。郝水源等[31]设置5种施肥处理,其中拔节期追施腐殖酸处理可以有效提高春小麦各生育时期叶面积指数,成熟期较不追肥对照处理提高了23.8%。腐植酸含有酚羟基、羟基等酸性基团,离子交换能力较强,施入土壤后促进了作物对氮的吸收及体内氮素代谢,进而提高了氮素利用率[25],拔节期施用腐殖酸肥料能够更加有效地提高植株根部H+-ATPase的活性,促进矿质营养从根部到茎部运输,从而促进植株根、茎和叶的生长,提高植株叶面积指数[32-33],也与试验的结果相符合。

4 结 论

施氮有利于冬小麦的生长发育,可显著提高冬小麦地下部生物量、地上部生物量、光合能力及产量。在伊犁河谷基施磷酸二铵为氮源效果不及以尿素为氮源,同一追施条件下基施不同磷酸二铵处理间小麦生物量与光合能力整体上差异不显著;反之,同一基施条件下追施腐殖酸尿素较追施尿素处理显著提高了冬小麦生物量、叶面积指数、净光合速率、SPAD值、生物量及产量,其中基施16-磷酸二铵+追施腐殖酸尿素(T4)施肥策略效果最优。

参考文献(References)

[1]Du Y,Niu W,Zhang Q, et al. A synthetic analysis of the effect of water and nitrogen inputs on wheat yield and water-and nitrogen-use efficiencies in China[J]. Field Crops Research, 2021, 265: 108105.

[2] Zhang Pengyan, Wang Maodong, Yu Lianyu, et al. Optimization of water and nitrogen management in wheat cultivation affected by biochar application-insights into resource utilization and economic benefits[J]. Agricultural Water Management, 2024, 304: 109093.

[3]裴雪霞, 党建友, 张定一, 等. 化肥减量配施有机肥对旱地小麦产量, 品质和水分利用率的影响[J]. 水土保持学报, 2021, 35(4): 250-258.

PEI Xuexia, DANG Jianyou, ZHANG Dingyi, et al. Effects of chemical fertilizer reduction combined with or ganie fertilizer on the yield, quality, and water use efficiency of dryland wheat [J] Journal of Soil and Water Conservation,202l,35(4):250.

[4]殷永娴, 刘鸿雁. 设施栽培下土壤中硝化、反硝化作用的研究[J].生态学报, 1996, 16(3):248.

YIN Yongxian, LIU Hongyan. Investigation on nitrification and denitrification of soil under installing cultivation conditions [J]. Acta EcologicaSinica, 1996, 16(3): 248.

[5] Mehmood F, Wang , Gao Y, et al. Nitrous oxide emission from winter wheat field as responded to irrigation scheduling and irrigation methods in the North China Plain[J]. Agricultural Water Management, 2019, 222: 367-374.

[6] Kong Lingan, Xie Yan, Hu Ling, et al. Remobilization of vegetative nitrogen to developing grain in wheat (Triticum aestivum L.) [J]. Field Crops Research, 2016, 196: 134-144.

[7]李书田, 刘晓永, 何萍. 当前我国农业生产中的养分需求分析[J]. 植物营养与肥料学报, 2017, 23(6): 1417.

LI Shutian, LIU Xiaoyong, HE Ping. Analyses on nutrient requirements incurrent agriculture production in China [J]. Plant Nutrition and Fertilizer Science, 2017, 23(6): 1417.

[8] Liu Xuejing, Yin Baozhong, Bao Xiaoyuan, et al. Optimization of irrigation period improves wheat yield by regulating source-sink relationship under water deficit[J]. European Journal of Agronomy, 2024, 156: 127164.

[9]刘盛林, 董晓霞, 孙泽强, 等. 尿素中添加腐植酸提升冬小麦产量和氮吸收效率[J]. 中国农学通报, 2020,36(14):16-21.

LIU Shenglin, DONG Xiaoxia, SUN Zeqiang, et al.Humic Acid Added in Urea proves Yield and Nitrogen Uptake of Winter Wheat[J].Chinese Agricultural Science Bulletin, 2020,36(14):16-21.

[10]袁晶晶, 同延安, 卢绍辉,等. 生物炭与氮肥配施改善土壤团聚体结构提高红枣产量[J]. 农业工程学报, 2018, 34: 159-165.

YUAN Jingjing, TONG Yanan, LU Shaohui, et al. Biochar and nitrogen amendments improving soil aggregate structure and jujube yields[J]. Transactions of the Chinese Society of Agricultural Engineering, 201834:159-165

[11]张贺, 杨静, 周吉祥,等. 连续施用土壤改良剂对砂质潮土团聚体及作物产量的影响[J]. 植物营养与肥料学报, 2021, 27: 791-801.

ZHANG He, YANG Jing, ZHOU Jixiang, et, al. Effects of organic and inorganic amendments on aggregation and crop yields in sandy fluvo-aguic soil[J].Plant Nutrition and Fertilizer Science,2021,27: 791-801.

[12]Aghajani S D, Alavifazel M, Nurmohammadi G, et al. Soil respiration, root traits and dry matter yield of sorghum (Sorghum bicolor L.) as affected by biochar application under different cropping patterns and irrigation method[J]. International Agrophysics, 2020, 34(4): 495-502.

[13]宋世龙, 杨卫君, 陈雨欣,等. 氮肥减量配施生物炭对北疆灌区春小麦光合和干物质转运特性及产量的影响[J].麦类作物学报, 2023, 43: 311-320.

SONG Shilong, YANG Weijun, CHEN Yuxin, et al. Effect of reduced nitrogen fertilizer combined with biochar on photosynthetic characteristics, dry matter accumulation and distribution, and yield of spring wheat in irrigated area of Xinjiang[J]. Journal of Crops, 2023, 43: 311-320.

[14]Li Weiwei, Ahmad Sajjad, Liu Dun, et al. Subsurface banding of blended controlled-release urea can optimize rice yields while minimizing yield-scaled greenhouse gas emissions[J]. The Crop Journal, 2023, 11(3): 914-921.

[15]Liu Tingna, Su Yongzhong, Niu Ziru, et al. Attapulgite application improves maize yield, water, and fertilizer utilization efficiency in newly cultivated sandy farmland in northwestern China[J]. Arid Land Research and Management, 2023, 37(3): 408-426.

[16]Liu Xiaoyuan, Yang Jingsong, Tao Jianyu, et al. Integrated application of inorganic fertilizer with fulvic acid for improving soil nutrient supply and nutrient use efficiency of winter wheat in a salt-affected soil[J]. Applied Soil Ecology, 2022, 170: 104255.

[17]王艳哲, 刘秀位, 孙宏勇,等.水氮调控对冬小麦根冠比和水分利用效率的影响研究[J].中国生态农业学报, 2013, 21(3): 283.

WANG Yanzhe, LIU Xiuwei, SUN Hongyong, et al. Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat[J]. Chinese Journal of Eco-Agriculture,2013,21(3):283.

[18]王丽芳, 康娟, 马耕, 等. 农田施氮对冬小麦产量, 根-冠氮素积累及其利用效率的影响[J]. 麦类作物学报, 2021, 41(11): 1403-1408.

WANG Lifang, KANG Juan, MA Geng, et al.Effect of Nitrogen Application on Yield, Nitrogen Accumulation and Use Efficiency in Root-Shoot of Winter Wheat[J]. Journal of Triticeas Crops, 2021, 41(11): 1403-1408.

[19]缑培欣, 陈智勇, 张阳阳, 等. 不同类型肥料对潮土冬小麦产量和品质及氮肥利用效率的影响[J]. 麦类作物学报, 2021, 41(8): 1023-1032.

HOU Peixin, CHEN Zhiyong, ZHANG Yangyang, et al. Effect of Different Types of Fertilizers on Yield, Quality and Nitrogen Use Efficiency of Winter Wheat in Alluvial Soil Farmland[J]. Journal of Triticeas Crops, 2021, 41(8): 1023-1032.

[20]涂攀峰, 陈小娟, 杨依彬, 等. 不同含铵磷源在石灰性土壤中氮磷元素的有效性及对玉米生长的影响[J]. 安徽农业科学, 2019, 47(23): 170-173.

TU Panfeng, CHEN Xiaojuan, YANG Yibin, et al.Effectiveness of Nitrogen and Phosphorus in Calcareous Soil from Different Sources of Ammonium and Phosphorus and Their Effects on Maize Growth[J].Journal of Anhui Agricultural Sciences, 2019, 47(23): 170-173.

[21]康飞, 孟凡乔. 基于文献分析的北方冬麦田氨挥发特性[J].农业工程学报, 2020, 36(1): 228-234.

KANG Fei, MENG Fanqiao. Ammonia volatilization from winter wheat cropland in Norther China based on a literature analysis[J].Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1): 228-234.

[22]邢素丽, 李孝兰, 杨军芳, 等. 新型尿素对小麦产量和氮肥利用率的应用效果研究[J]. 河北农业科学, 2017, 21(6): 40-43.

XING Suli, LI Xiaolan, YANG Junfang, et al. Application effect of new urea on wheat yield and utilization rate of nitrogen fertilizer[J]. Journal of Hebei Agricultural Science, 2017, (6):40-43.

[23]刘红恩, 张胜男, 刘世亮, 等. 腐植酸尿素对冬小麦产量, 养分吸收利用和土壤养分的影响[J]. 西北农业学报, 2018, 27(7): 944.

LIU Hongen, ZHANG Shengnan, LIU Shiliang, et al.Effects of humic acid urea onwinter wheat yield, nutrient absorption and utilization,and soil nutrients[J]. Acta AgriculturaeBoreali-OccidentalisSinica, 2018,27(7):944-952.

[24]于正国, 袁亮, 赵秉强, 等. 腐植酸与尿素结合工艺对尿素在潮土中转化的影响[J]. 中国土壤与肥料, 2022, (1): 206-212.

YU Zhengguo, YUAN Liang, ZHAO Bingqiang, et al.Effect of the combination of humic acid and urea on the conversion of urea in fluvo-aquic soil[J].Soil and Fertilizer Sciences in China, 2022, (1): 206-212.

[25]Campitelli P A, Velasco M I, Ceppi S B. Chemical and physicochemical characteristics of humic acids extracted from compost, soil and amended soil[J]. Talanta, 2006, 69(5): 1234-1239.

[26]Shen Yuwen, Lin Haitao, Gao Wensheng, et al. The effects of humic acid urea and poly aspartic acid urea on reducing nitrogen loss compared with urea[J]. Journal of the Science of Food and Agriculture, 2020, 100(12): 4425-4432.

[27]王欢, 苏文平, 赵鑫琳. 不同水氮处理对冬播春小麦产量和水氮利用效率的影响[J]. 麦类作物学报, 2022, 42(11): 1381-1390.

WANG Huan, SU Wenping, ZHAO Xinlin. Effect of Different Irrigation and Nitrogen Application on Yield, Waterand Nitrogen UseEfficiency of Spring Wheat Sown in Winter[J].Journal of Triticeae Crops, 2022, 42(11): 1381-1390.

[28]聂峥睿, 坚天才, 张战胜, 等. 施氮量对花后高温春小麦源库特征及关系的影响[J]. 核农学报, 2024, 38(12): 2421-2431.

NIE Zhengrui, JIAN Tiancai, ZHANG Zhansheng, et al.Effects of Nitrogen Rates on Source-Sink Characteristics and Relationship of Spring Wheat after Anthesis under High Temperature[J].Journal of Triticeae Crops, 2024, 38(12): 2421-2431.

[29]MA Zhentao, ZHANG Zhen, WANG Xizhi, et al. Effect of Nitrogen Management Practices on Photosynthetic Characteristics and Grain Yield of Wheat in High-Fertility Soil[J]. Agronomy, 2024, 14(10): 2197.

[30]曲文凯, 徐学欣, 赵金科, 等. 施氮对滴灌冬小麦花后光合生理, 灌浆特性及产量品质的影响[J]. 水土保持学报, 2022, 36(5): 327-336.

QU Wenkai, XU Xuexin, ZHAO Jinke, et al.Effect of Nitrogen Application on Photosynthetic Physiology, Grain-Filling Characteristics and Yield and Quality After Anthesis of Winter Wheat Under Drip Irrigation[J].Journal of Soil and Water Conservation, 2022, 36(5): 327-336.

[31]郝水源, 李林虎, 闫素珍, 等. 不同施肥方式对河套灌区春小麦光合特性及产量的影响[J]. 内蒙古农业大学学报, 2018,(1): 10-16.

HAO Shuiyuan, LI Linhu, YAN Suzhen, et al.Effect of different fertilization systems on spring wheat and photosynthesis characteristic and yield in HETAO irrigation district[J].Journal of Inner Mongolia Agricultural University, 2018,(1): 10-16.

[32]Mora V, Baigorri R, Bacaicoa E, et al. The humic acid-induced changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture caused by humic acid in cucumber[J]. Environmental and Experimental Botany, 2012, 76: 24-32.

[33]Mora V, Bacaicoa E, Zamarreno A M, et al. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients[J]. Journal of Plant Physiology, 2010, 167(8): 633-642.

Effects of different nitrogen fertilizers with humic acid strategies

on photosynthetic characteristics and yield of winter wheat

MA Lin1,HUANG Qiannan1,YANG Hui1,Dengsilamu Tuerxunbai1,

ZOU Hui1,SUN Na1,LEI Junjie2

(1. Key Laboratory of Crop Breeding and Quality Testing of Yili Prefecture /Institute of Agricultural Sciences of Yili Prefecture, Yining Xinjiang 835000,China; 2. Key Laboratory of Desert Oasis Crop Physiology, Ecology and Tillage, Ministry of Agriculture and Rural Areas/ Institute of Grain Crops,Xinjiang Academy of Agricultural Sciences, Urumqi 830091,China)

Abstract:【Objective】 To investigate the effects of different nitrogen fertilizer types and soil conditioner dosing strategies on photosynthetic characteristics, yield and yield components of wheat in the hope of providing reference for the reasonable dosing of nitrogen fertilizer and humic acid for wheat in Xinjiang.

【Methods】" Under drip irrigation in large fields, five treatments of winter wheat variety Yinong 22 were set up without nitrogen fertilizer (CK), basal application of 18-Diammonium Phosphate (DAP) + Trailing urea (T1), basal application of 16-DAP + Trailing urea (T2), basal application of 18-DAP + Trailing humic acid urea (T3), and basal application of 16-DAP + Trailing humic acid urea (T4) to explore the effects of different fertilizer application strategies on the biomass, leaf area index, SPAD value, net photosynthetic rate, yield and yield components of winter wheat.

【Results】" Each N application treatment significantly increased winter wheat below-ground biomass, above-ground biomass, photosynthetic capacity, yield and yield components relative to the CK treatment, with significant differences between the basal application of humic acid urea relative to the basal application of urea treatment under the same basal application condition, whereas there were differences, but not significant, between the basal application of different diammonium phosphate treatments under the same basal application condition. The leaf area index, SPAD value and net photosynthetic rate of nitrogen application treatment increased by 4.88% - 32.43%, 18.31% - 36.36% and 13.31% - 42.17%, respectively, compared with the control treatment, which showed T4gt;T3gt;T1gt;T2gt;CK; the number of spikes, number of grains in a spike and thousand-grain weight of the nitrogen treatment increased by 23.99%-32.04%, respectively, compared with the control treatment, 10.16%-15.29% and 3.95%-5.64%, respectively, which showed T4gt;T3gt;T2gt;T1gt;CK; T3 treatment increased the below-ground biomass, above-ground biomass, and yield by 13.32%, 3.61%, and 1.77%, respectively, compared with T1 treatment, and T4 treatment increased the yield by 9.84%, 7.14%, and 5.81%, respectively, compared with T2. The T4 treatment effect was optimal among all the treatments.

【Conclusion】 Nitrogen application is favorable to the growth and development of winter wheat, which can significantly increase the biomass, photosynthetic capacity and yield of winter wheat. The effect of the follow-up application of humic acid urea at the nodulation stage was better than that of the basal application of different types of diammonium phosphate, among which the T4 treatment (basal application of 16-diammonium phosphate + follow-up application of humic acid urea) has the best effect in enhancing the biomass, photosynthetic capacity and yield of winter wheat.

Key words:nitrogenous fertilizer; humic acid; winter wheat; photosynthetic properties; yield

Fund projects:Major Scientific R amp;D Program Special Project of Xinjiang Uygur Autonomous Region(2022B02015-2);Science and Technology Program Project of Yili Prefecture (YZ2022A006); Xinjiang Agriculture Research System(XJARS-01)

Correspondence author: SUN Na(1982-),female,from Jilin,senior agronomist,research direction: wheat genetic breeding,(E-mail)Sna18509993321@163.com

LEI Junjie(1972-),male,from Gulang,Gansu,researcher,Ph.D., masters supervisor,research direction: high yield and effcient cultivation of wheat,(E-mail)Leijunjie@souho.com

标签:  尿素 

免责声明

本文来自网络,不代表本站立场。如有不愿意被转载的情况,请联系我们。