摘"要:【目的】""研究盐、碱及复合盐碱胁迫对番茄幼苗光合特性及抗氧化酶活性的影响。
【方法】""以前期筛选的耐盐渐渗系番茄品种IL7-5-5及盐敏感栽培番茄品种M82为材料,通过对幼苗进行相同浓度的盐、碱及复合盐碱胁迫处理,研究不同胁迫条件下番茄幼苗光合特性、MDA、O-2、H2O2含量以及SOD、POD、CAT、APX、GR活性的影响。
【结果】""与对照相比,盐胁迫条件下,番茄品种M82幼苗叶片光合气体交换参数显著降低,Pn降低了48.10%,WUE极显著增加了95.81%,POD和CAT活性极显著降低,GR活性显著增加,从而使O-2和H2O2含量极显著降低了15.75%、25.85%;IL7-5-5番茄品种幼苗叶片Pn、Ci、WUE极显著降低,分别降低了34.72%、32.78%、51.02%,SOD活性极显著增加,GR活性显著增加,CAT和APX活性极显著降低,使MDA、O-2和H2O2含量极显著降低了29.48%、34.47%和18.66%。碱胁迫条件下,番茄品种M82幼苗叶片光合气体交换参数Pn、Gs、Tr、CE极显著降低56.40%、71.02%、61.93%和41.73%,Ci显著降低了25.49%,POD和CAT活性极显著增加,APX活性极显著降低,使MDA含量极显著增加了40.55%,O-2和H2O2含量极显著降低了25.80%、20.48%;番茄品种IL7-5-5幼苗叶片光合气体交换参数Pn、Gs和Ci极显著降低68.75%、74.65%和59.49%,Tr、CE显著降低63.69%、21.54%,SOD活性极显著增加,CAT和GR活性极显著降低,使O-2产生速率显著下降10.18%。盐碱胁迫条件下,番茄品种M82幼苗叶片光合气体交换参数Pn、Gs、Ci、Tr和CE极显著下降44.64%、67.05%、37.46%、56.56%和11.58%,POD活性极显著下降,APX活性显著下降,使O-2极显著下降34.06%,MDA含量极显著增加37.44%;番茄品种IL7-5-5幼苗叶片光合气体交换参数Pn、Gs极显著下降27.78%、78.87%,Tr显著下降69.05%,WUE极显著增加128.17%,GR和SOD活性极显著增加,使O-2产生速率极显著下降25.30%。
【结论】""2个番茄品种均能够通过调节抗氧化酶活性,达到清除O-2和H2O2的效果,番茄品种IL7-5-5幼苗能够维持MDA含量在对照水平,比番茄品种M82膜脂过氧化程度轻。3种胁迫条件下,番茄幼苗的光合速率下降,2个番茄品种均以碱胁迫最低;碱胁迫和盐碱胁迫均对番茄品种M82幼苗造成了一定程度的膜脂过氧化损伤;胁迫不同程度的调节了2个番茄品种幼苗叶片抗氧化酶的活性、O-2和H2O2的含量,其中2个番茄品种均以盐胁迫条件下H2O2的含量最低,其次是碱胁迫、盐碱胁迫。
关键词:""番茄;盐胁迫;碱胁迫;复合盐碱胁迫;光合特性;酶活性
中图分类号:"S641.2""""文献标志码:"A""""文章编号:"1001-4330(2024)11-2658-09
0"引 言
【研究意义】碱胁迫不同于盐胁迫,对植物的伤害远大于盐胁迫。但盐碱混合胁迫并不是盐胁迫(中性盐胁迫)和碱胁迫(碱性盐胁迫)的叠加,两者间的协同效应对作物的伤害常远大于单一盐、碱胁迫[1]。在自然环境中,盐胁迫与碱胁迫往往同时发生,可能对植物的生长发育造成混合效应,与单一盐胁迫、碱胁迫表现出不同的生理及分子机制。【前人研究进展】盐胁迫包括渗透胁迫和离子毒害,而碱胁迫不仅包括渗透胁迫和离子毒害,还包括pH胁迫。与盐胁迫相比,碱胁迫条件下作物细胞中离子的平衡状态遭到破坏,Ca2+、K+和Na+等离子在细胞内的分布受到影响,导致作物生长受抑制和农业生产力下降。盐碱混合胁迫会降低土壤渗透势,使作物离子失衡和生理代谢紊乱、生长受抑和产量下降[2-3]。盐碱混合胁迫也导致植物活性氧代谢失调[4],降低线粒体功能和叶绿体光能转换效率,甚至引起植株死亡[5]。【本研究切入点】研究以盐敏感材料M82和耐盐渐渗系IL-7-5 2个番茄品种为材料,研究盐胁迫、碱胁迫和复合盐碱胁迫条件下,番茄幼苗的光合特性、MDA、O-2、H2O2含量以及SOD、POD、CAT、APX、GR活性的影响差异。【拟解决的关键问题】探究不同抗性番茄品种响应盐、碱及复合盐碱胁迫的生理机制,为提高番茄耐盐碱性及复合盐碱胁迫研究提供参考。
1"材料与方法
1.1"材 料
试验于2020年在新疆农业科学院园艺作物研究所光照培养室进行。供试番茄品种为耐盐渐渗系IL7-5-5及盐敏感栽培番茄M82。采用穴盘基质育苗(穴盘规格72穴),待幼苗长至二叶一心,将穴盘剪开成3穴×4穴大小,置于发芽盒中,用1/2 Hoagland营养液培养至4叶1心,设不同胁迫处理:(1)对照;(2)100 mmol/L NaCl;(3)100 mmol/L NaHCO3;(4)50 mmol/L NaCl+50 mmol/L NaHCO3,即IL7-5-5品种4个处理为L-1、L-2、L-3和L-4,M8-2品种4个处理记为M-1、M-2、M-3和M-4。胁迫均加至营养液中,每个处理3个重复。室内环境控制标准:温度控制在白天28℃,晚上22℃,空气湿度40%,光照强度为3 000 lx,光质为三基色自然光,光周期为白天14 h/夜晚10 h。
1.2"方 法
于胁迫第10 d 上午10:00,用便携式光合测定系统TPS-2 测定番茄幼苗叶片光合气体参数,设定光强为938 μmol/(m2·s),测定内容包括光合速率、蒸腾速率、气孔导度、水分利用率等。叶片水分利用效率(WUE):WUE = Pn/Tr。羧化效率(CE):CE=Pn/Ci。其中测量部位为每株植株的倒三叶,每个处理重复3次。
另外,每个处理取6株番茄植株,将倒二叶和倒三叶取下,混匀,分装,用液氮速冻,然后置于-80℃超低温冰箱保存。用于测定生理指标。超氧阴离子(O-2)、过氧化氢含量(H2O2)、丙二醛(MDA)含量,及超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、谷胱甘肽还原酶(GR)、抗坏血酸过氧化物酶(APX)活性测定采用苏州科铭生物技术有限公司的微量法试剂盒。
1.3"数据处理
所有数据采用Microsoft Excel 2007和SPSS进行数据处理和差异显著性检验(Duncans 法)。作图采用Microsoft Excel 2007软件。
2"结果与分析
2.1"盐、碱及复合盐碱胁迫对番茄幼苗光合特性的影响"
研究表明,不同胁迫条件对2个番茄品种幼苗叶片光合气体交换参数Pn、Gs和Ci的影响表现为M82显著高于IL 7-5-5,Tr表现相反。M82与对照相比,盐、复合盐碱胁迫条件下番茄幼苗叶片光合气体交换参数均极显著降低;碱胁迫条件下Pn、Gs、Tr等参数降低了56.40%、71.02%、61.93%,达到极显著差异水平,Ci降低了25.49%,达显著差异水平。3种胁迫条件相比,盐胁迫条件下番茄幼苗叶片Pn显著高于碱胁迫,复合盐碱胁迫条件下番茄幼苗叶片Pn极显著高于碱胁迫。IL 7-5-5与对照相比,盐胁迫条件下番茄幼苗叶片光合气体交换参数Pn、Ci降低了34.72%、32.78%。达到极显著差异水平,Gs、Tr未达到显著差异水平;碱胁迫条件下光合气体交换参数均极显著降低,分别降低了68.75%、74.65%、59.49%和63.69%;复合盐碱胁迫条件下Pn、Gs降低了27.78%、78.87%,达极显著差异水平,Ci、Tr未达到显著差异水平。3种胁迫条件相比,盐、复合盐碱胁迫条件下番茄幼苗叶片Pn极显著高于碱胁迫。图1"
研究表明,不同胁迫条件下2个番茄品种幼苗叶片WUE表现为M82显著低于IL 7-5-5,CE表现相反。M82与对照相比,盐胁迫条件下番茄幼苗叶片WUE极显著升高,达到95.81%;碱、复合盐碱胁迫条件下无显著差异;与对照相比,盐胁迫条件下番茄幼苗叶片CE显著降低,未达到极显著差异水平;碱、复合盐碱胁迫条件下极显著降低,分别降低了41.73%、11.58%。IL 7-5-5与对照相比,盐胁迫条件下番茄幼苗叶片WUE极显著降低,降低了51.02%,碱胁迫条件下无明显变化,复合盐碱胁迫条件下极显著升高,达128.17%;与对照相比,3种胁迫条件下番茄幼苗叶片CE均呈降低的趋势,其中L-3处理达到显著差异水平。图2"
2.2"盐、碱及复合盐碱胁迫对番茄幼苗叶片MDA、H2O2和O-2含量的影响"
研究表明,不同胁迫条件对2个番茄品种幼苗叶片MDA含量的影响无显著差异。M82与对照相比,盐胁迫条件下MDA含量降低,未达到显著差异水平;碱胁迫和复合盐碱胁迫条件下MDA含量升高至极显著差异水平,分别增加了40.55%、37.44%。IL 7-5-5与对照相比,盐胁迫条件下MDA含量降低29.48%,达到极显著差异水平;碱胁迫条件下MDA降低5.92%,未达到显著差异水平;复合盐碱胁迫条件下MDA含量升高6.63%,未达到显著差异水平。3种胁迫条件相比,2个番茄品种均表现为碱胁迫和复合盐碱胁迫条件下MDA含量极显著高于盐胁迫,前两者之间无显著差异。图3
不同胁迫条件对2个番茄品种幼苗叶片超氧阴离子产生速率的影响无显著差异。M82与对照相比,盐、碱及复合盐碱胁迫条件下番茄幼苗叶片超氧阴离子产生速率分别降低15.75%、25.80%和34.06%,均达到极显著差异水平,其中碱胁迫条件下番茄幼苗叶片超氧阴离子产生速率极显著低于盐胁迫,复合盐碱胁迫显著低于前二者;IL 7-5-5与对照相比,盐、碱及复合盐碱胁迫条件下番茄幼苗叶片超氧阴离子产生速率分别降低34.47%、10.18%和25.30%,均达到显著差异水平,且盐胁迫与复合盐碱胁迫差异达到极显著水平;3种胁迫条件相比,表现为碱gt;复合盐碱gt;盐,均达到显著差异水平。
不同胁迫条件对2个番茄品种幼苗叶片过氧化氢含量的影响无显著差异。M82盐胁迫和碱胁迫条件下番茄幼苗叶片过氧化氢含量极显著降低,分别减少了25.85%、20.48%;复合盐碱胁迫条件下过氧化氢含量增加了1.73%,未达到显著差异水平;3种胁迫条件相比,复合盐碱胁迫极显著大于盐、碱胁迫,后两者未达到显著差异水平。IL 7-5-5与对照相比,盐、碱及复合盐碱胁迫条件下番茄幼苗叶片过氧化氢含量分别降低18.66%、11.86%和1.33%,其中盐胁迫达到显著差异水平;3种胁迫条件相比,表现为复合盐碱胁迫显著大于盐胁迫。图4
2.3"盐、碱及复合盐碱胁迫对番茄幼苗叶片SOD、POD、CAT、GR、APX活性的影响"
研究表明,不同胁迫条件对2个番茄品种幼苗叶片SOD活性的影响无显著差异。M82与对照相比,盐、碱及复合盐碱胁迫条件下番茄幼苗叶片SOD活性无显著差异。IL 7-5-5与对照相比,盐、碱及复合盐碱胁迫条件下番茄幼苗叶片SOD活性分别升高37.37%、44.44%和37.91%,均达到极显著差异水平;3种胁迫条件之间未达到显著差异水平。
不同胁迫条件对2个番茄品种幼苗叶片POD活性的影响表现为M82显著高于IL 7-5-5。M82与对照相比,盐、碱及复合盐碱胁迫条件下番茄幼苗叶片POD活性均极显著降低,降低了46.77%、33.95%、31.81%,IL 7-5-5在盐、碱及复合盐碱胁迫条件下番茄幼苗叶片POD活性与对照无显著差异。
不同胁迫条件对2个番茄品种幼苗叶片POD活性的影响表现为M82显著低于IL 7-5-5。M82与对照相比,盐胁迫条件下番茄幼苗叶片CAT活性显著降低48.74%,碱胁迫条件下极显著升高207.65%,复合盐碱胁迫条件下无显著差异。3种胁迫条件之间相比,碱胁迫极显著高于盐、复合盐碱胁迫。IL 7-5-5在盐、碱胁迫条件下番茄幼苗叶片CAT活性极显著降低,降低了67.49%、55.24%,复合盐碱胁迫条件下与对照无显著差异。3种胁迫条件之间相比,复合盐碱胁迫极显著高于盐、碱胁迫。图5"
不同胁迫条件对2个番茄品种幼苗叶片GR活性的影响表现为M82显著高于IL 7-5-5。M82与对照相比,盐胁迫条件下番茄幼苗叶片GR活性极显著升高20.63%;碱胁迫条件下升高15.26%,未达显著水平;复合盐碱胁迫条件下无明显变化。IL 7-5-5与对照相比,盐胁迫条件下番茄幼苗叶片GR活性显著升高,升高了22.05%;碱胁迫条件下极显著降低,降低了62.89%;复合盐碱胁迫条件下极显著升高,升高了38.67%。3种胁迫条件之间相比,盐胁迫、复合盐碱胁迫极显著高于碱胁迫。
不同胁迫条件对2个番茄品种幼苗叶片APX活性的影响表现为M82显著低于IL 7-5-5。M82与对照相比,盐胁迫条件下番茄幼苗叶片APX活性升高3.86%,未达显著差异水平;碱胁迫条件下降低38.21%,达极显著水平;复合盐碱胁迫条件下降低了13.65%,达到显著水平。3种胁迫条件之间相比,盐胁迫显著高于碱、复合盐碱胁迫。IL 7-5-5与对照相比,盐胁迫条件下番茄幼苗叶片APX活性极显著降低,降低了16.10%;碱、复合盐碱胁迫条件下分别降低了10.28%、7.91%,未达到显著差异水平。3种胁迫条件之间相比,均未达到显著差异水平。图6"
3"讨 论
3.1
胁迫条件下,大多数植物光合速率显著降低,试验也证明了这一点。胁迫条件下,番茄品种M82幼苗叶片的净光合速率显著降低,伴随着Gs和Ci的显著降低,说明胁迫条件下番茄幼苗叶片 Pn的降低以气孔限制因素为主,可能是由于胁迫条件下,氧化胁迫增加和高浓度的Na+、Cl-等积累所导致的渗透和离子胁迫,使叶片发生生理干旱、气孔收缩,从而限制了CO2向叶绿体的输送,引起番茄幼苗叶片Pn下降[6];IL 7-5-5番茄品种幼苗叶片的净光合速率也表现出显著降低的趋势,其中盐胁迫条件下Ci极显著降低,复合盐碱胁迫条件下Gs极显著降低,说明盐、复合盐碱胁迫降低番茄叶片Pn的活性均以非气孔限制为主,需要进一步进行微表观观察以及光合过程的酶活性等方面展开研究。同时,研究也表明,盐胁迫条件下番茄品种M82幼苗WUE极显著升高,由于叶片水分利用效率不仅受外部因素的影响,而且受植物内部因素的影响,所以番茄叶片水分利用率变化的具体情况还需要进一步研究。另外,2品种的CE表现为盐敏感品种M82大于耐盐品种IL 7-5-5,品种间差异较大,说明不同番茄品种具有不同的羧化效率水平,CE是否可以作为筛选耐盐番茄品种指标,还有待进一步研究。
3.2
正常条件下,植物体内活性氧的产生与清除保持动态的平衡;盐胁迫时,由于细胞代谢受阻将产生大量的活性氧导致膜系统损伤和细胞伤害,加速细胞衰老和解体,从而影响植物生长[7]。试验中,盐胁迫条件下2个番茄品种的幼苗叶片O-2产生速率和H2O2含量均显著降低,MDA含量降低,伴随着番茄品种M82幼苗的GR活性显著增加、POD活性极显著降低、CAT活性降低以及IL 7-5-5番茄品种SOD活性极显著增加,GR活性显著增加、CAT和APX活性极显著降低,说明100 mmol/L的盐胁迫激活了番茄幼苗的抗氧化系统,不同程度的提高了番茄叶片清除活性氧的效率,降低了胁迫造成的膜脂过氧化程度。碱胁迫条件下,番茄品种M82幼苗叶片CAT活性极显著升高,POD和APX活性极显著降低,O-2产生速率和H2O2含量均极显著降低,说明碱胁迫一定程度的激活了番茄幼苗的抗氧化系统,但MDA含量显著增加,说明碱胁迫仍然造成了严重的膜脂过氧化;IL 7-5-5番茄品种幼苗叶片SOD 活性极显著升高,CAT和GR活性极显著降低,O-2产生速率显著降低,H2O2和MDA的积累保持在对照水平,保持了较好的细胞膜完整性。复合盐碱胁迫条件下,番茄品种M82幼苗叶片APX活性显著降低、POD活性和O-2产生速率极显著降低、MDA含量极显著增加,说明复合盐碱胁迫造成了番茄幼苗叶片的膜脂过氧化;番茄品种IL 7-5-5幼苗叶片SOD和GR活性极显著升高,O-2产生速率极显著降低,POD、CAT、APX活性、H2O2、MDA含量保持在对照水平,说明复合盐碱胁迫激活了番茄幼苗的抗氧化系统,提高了番茄叶片清除活性氧的效率,保护了自身的膜系统完整性。
3.3
盐、碱胁迫相关研究较多,但对盐、碱及复合盐碱对番茄的影响差异研究较少。已有研究表明,植物对碱性盐和中性盐胁迫的响应存在不同的机制[8]。碱胁迫不仅具有与盐胁迫相同的破坏因素,而且还增加了高pH值胁迫,导致对植物的更多破坏[9-10]。试验研究发现,胁迫对番茄幼苗叶片净光合速率的降低幅度及机制有所不同,其中以碱胁迫对净光合速率的降低最大,这和郭瑞等[11-12]的研究结果一致,可能是由于碱胁迫使光系统潜在活性受到抑制,直接影响了光合作用的电子传递[13]。碱胁迫和盐碱胁迫造成了MDA的大量积累,以番茄品种M82幼苗叶片中积累更多,MDA含量增加了40.55%,37.44%,其含量高低可以作为考察细胞受到胁迫严重程度的指标之一[14],说明碱胁迫和盐碱胁迫对番茄幼苗叶片造成了较严重的膜脂过氧化损伤,对感盐品种M82的膜脂过氧化损伤更严重。不同胁迫条件下,番茄幼苗叶片通过调节不同抗氧化酶的活性水平达到清除活性氧的目的。碱胁迫和盐碱胁迫均显著增加了番茄幼苗叶片POD活性,POD作为组织老化的生理指标之一,推测可能是由于碱胁迫和盐碱胁迫的高pH使番茄幼苗膜脂质过氧化作用增加,打破活性氧的代谢失衡,膜结构遭到破坏,影响了膜的功能,随着脂质过氧化产物积累越多,植株衰老现象越严重,POD活性被激活[15]。另外,盐碱胁迫条件下,耐盐品种IL7-5-5番茄幼苗叶片GR的活性增加,推测是由于ASA-GSH循环参与了活性氧的清除。
4"结 论"""4.1
胁迫条件下,番茄品种M82幼苗叶片的净光合速率显著降低,以气孔限制因素为主;番茄品种IL 7-5-5幼苗叶片的净光合速率也表现出显著降低的趋势,以非气孔限制为主。
4.2"""碱和盐碱胁迫对番茄幼苗的膜脂过氧化损伤程度更严重,表现为MDA含量的大量积累,以番茄品种M82幼苗叶片中积累更多,MDA含量增加了40.55%,37.44%。
4.3"""番茄幼苗能够通过不同的响应机制一定程度的缓解损伤。盐胁迫能够通过增加番茄品种M82幼苗叶片的GR活性以及番茄品种IL7-5-5幼苗叶片的SOD和GR活性,降低O-2和H2O2含量,一定程度的缓解胁迫造成的氧化损伤;碱胁迫条件下,M82抗氧化酶POD和CAT活性极显著增加,一定程度的降低了O-2和H2O2含量,缓解了胁迫造成的氧化损伤,MDA含量极显著增加碱胁迫对叶片造成了较强的膜脂过氧化损伤,番茄品种IL7-5-5幼苗叶片SOD活性极显著增加,O-2产生速率显著下降,一定程度的缓解胁迫造成的氧化损伤;盐碱胁迫条件下,番茄品种M82幼苗叶片的MDA含量极显著增加,盐碱胁迫对叶片造成了较强的膜脂过氧化损伤,番茄品种IL7-5-5幼苗叶片GR和SOD活性极显著增加,O-2产生速率极显著下降,一定程度的缓解胁迫造成的氧化损伤。
参考文献"(References)
[1]"闫永庆, 刘兴亮, 王昆,等. 白刺对不同浓度混合盐碱胁迫的生理响应[J]. 植物生态学报, 2010, 34(10): 1213-1219.
YAN Yongqing, LIU Xingliang, WANG Kun, et al. Effect of complex saline-alkali stress on physiological parameters of Nitratia tangutorum[J]. Chinese Journal of Plant Ecology, 2010, 34(10): 1213-1219.
[2] 刘建新, 王金成, 王瑞娟,等. 混合盐碱胁迫对燕麦幼苗矿质离子吸收和光合特性的影响[J]. 干旱地区农业研究, 2017, 35(1): 178-184, 239.
LIU Jianxin, WANG Jincheng, WANG Ruijuan, et al. Effect of complex saline-alkali stress on the mineral ions absorption and photosynthetic characteristics of oat seedlings[J]. Agricultural Research in the Arid Areas, 2017, 35(1): 178-184, 239.
[3] 王佺珍, 刘倩, 高娅妮,等. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报, 2017, 37(16): 5565-5577.
WANG Quanzhen, LIU Qian, GAO Yani, et al. Review on the mechanisms of the response to salinity-alkalinity stress in plants[J]. Acta Ecologica Sinica, 2017, 37(16): 5565-5577.
[4] 潘雄波, 向丽霞, 胡晓辉,等. 外源亚精胺对盐碱胁迫下番茄幼苗根系线粒体功能的影响[J]. 应用生态学报, 2016, 27(2): 491-498.
PAN Xiongbo, XIANG Lixia, HU Xiaohui, et al. Effects of exogenous spermidine on mitochondrial function of tomato seedling roots under salinity-alkalinity stress[J]. Chinese Journal of Applied Ecology, 2016, 27(2): 491-498.
[5] 李辛, 赵文智. 荒漠区植物雾冰藜光合特性对混合盐碱胁迫的响应[J]. 生态学报, 2018, 38(4): 1183-1193.
LI Xin, ZHAO Wenzhi. Response of various salt-alkaline mixed stresses on the photosynthetic characteristics of Bassia dasyphylla in a desert region[J]. Acta Ecologica Sinica, 2018, 38(4): 1183-1193.
[6] 刘会芳, 何晓玲, 肖春燕,等. 外源GSH对NaCl胁迫下番茄幼苗光合特性及碳同化关键酶基因表达的影响[J]. 应用生态学报, 2014, 25(9): 2637-2644.
LIU Huifang, HE Xiaoling, XIAO Chunyan, et al. Effects of exogenous GSH on photosynthetic characteristics and expression of key enzyme genes of CO2 assimilation in leaves of tomato seedlings under NaCl stress[J]. Chinese Journal of Applied Ecology, 2014, 25(9): 2637-2644.
[7] Sreenivasulu N, Grimm B, Wobus U, et al. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica)[J]. Physiologia Plantarum, 2000, 109(4): 435-442.
[8] Geng G, Li R R, Stevanato P, et al. Physiological and transcriptome analysis of sugar beet reveals different mechanisms of response to neutral salt and alkaline salt stresses[J]. Frontiers in Plant Science, 2020, 11: 571864.
[9] Lin J X, Yu D F, Shi Y J, et al. Salt-alkali tolerance during germination and establishment of Leymus chinensis in the Songnen Grassland of China[J]. Ecological Engineering, 2016, 95: 763-769.
[10] Song T T, Xu H H, Sun N, et al. Metabolomic analysis of alfalfa (Medicago sativa L.) root-symbiotic rhizobia responses under alkali stress[J]. Frontiers in Plant Science, 2017, 8: 1208.
[11] Shi C C, Yang F, Liu Z H, et al. Uniform water potential induced by salt, alkali, and drought stresses has different impacts on the seedling of Hordeum jubatum: from growth, photosynthesis, and chlorophyll fluorescence[J]. Frontiers in Plant Science, 2021, 12: 733236.
[12] 郭瑞, 周际, 杨帆,等. 碱胁迫对小麦(Triticum aestivum linn)叶片代谢过程的影响[J]. 中国农业科学, 2017, 50(2): 250-259.
GUO Rui, ZHOU Ji, YANG Fan, et al. Effects of alkaline stress on metabonomic responses of wheat(Triticum aestivum linn) leaves[J]. Scientia Agricultura Sinica, 2017, 50(2): 250-259.
[13] 石德成, 赵可夫. NaCl和Na2CO3对星星草生长及营养液中主要矿质元素存在状态的影响[J]. 草业学报, 1997, 6(2): 51-61.
SHI Decheng, ZHAO Kefu. Effects of NaCl and Na2CO3 on the growth of PUCCINELLIA tenuiflora and the existing state of main mineral elements in nutrient solution[J]. Acta Prataculturae Sinica, 1997, 6(2): 51-61.
[14] Wang C, Zhang S H, Wang P F, et al. Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans (Lour.) Hara[J]. Aquatic Toxicology, 2008, 87(2): 88-98.
[15] 邹晓云, 向华, 于晓英. Cu2+胁迫对香菇草生长和生理生化特性的影响[J]. 天津农业科学, 2011, 17(1): 22-24.
ZOU Xiaoyun, XIANG Hua, YU Xiaoying. Effects of Cu2+ stress on the growth and physiological and biochemical characteristics of Hydrocotyle vulgaris[J]. Tianjin Agricultural Sciences, 2011, 17(1): 22-24.
Effects of salt, alkali and complex salt alkali stress on the ""photosynthetic characteristics and antioxidant enzyme ""activity of tomato seedlings
LIU Huifang,WANG Qiang,HAN Hongwei,ZHUANG Hongmei,WANG Hao,CHANG Yanan
(1. Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Xinjiang Vegetable Engineering Technology Research Center/XJARS-Vegetable/Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables,Urumqi "830091,China)
Abstract:【Objective】 ""To explore the effects of salt, alkali and complex salt alkali stress on the photosynthetic characteristics and antioxidant enzyme activity of tomato seedlings.
【Methods】 """In this study, the salt-tolerant tomato IL7-5-5 and the salt-sensitive tomato M82 were selected as materials, and the seedlings were subjected to the same concentration of salt, alkali and complex salt alkali stress. The photosynthetic characteristics, contents of MDA, O-2, H2O2 and activities of SOD, POD, CAT, APX and GR of tomato seedlings under different stress conditions were studied.
【Results】 """The results showed that: Compared with the control, under salt stress, photosynthetic gas exchange parameters of M82 tomato seedlings significantly decreased, Pn decreased by 48.10%, WUE increased by 95.81%, POD and CAT activities significantly decreased, and GR activity significantly increased. The contents of O-2 and H2O2 were significantly reduced by 15.75% and 25.85%. Leaf Pn, Ci and WUE of IL7-5-5 varieties were significantly decreased by 34.72%, 32.78% and 51.02%, respectively. SOD activity was significantly increased, GR activity was significantly increased, CAT and APX activities were significantly decreased. The contents of MDA, O-2 and H2O2 were significantly reduced by 29.48%, 34.47% and 18.66%. Under alkali stress, photosynthetic gas exchange parameters Pn, Gs, Tr and CE of M82 tomato seedlings significantly decreased by 56.40%, 71.02%, 61.93% and 41.73%, Ci significantly decreased by 25.49%, POD and CAT activities significantly increased, and APX activities significantly decreased. MDA content was significantly increased by 40.55%, while O-2 and H2O2 contents were significantly decreased by 25.80% and 20.48%. Photosynthetic gas exchange parameters Pn, Gs and Ci of IL7-5-5 tomato seedlings significantly decreased by 68.75%, 74.65% and 59.49%, Tr and CE significantly decreased by 63.69% and 21.54%, SOD activity significantly increased, CAT and GR activities significantly decreased. The production rate of O-2 decreased by 10.18%. Under salt-alkali stress, photosynthetic gas exchange parameters Pn, Gs, Ci, Tr and CE of M82 tomato seedlings significantly decreased by 44.64%, 67.05%, 37.46%, 56.56% and 11.58%, POD activity significantly decreased, APX activity significantly decreased, O-2 significantly decreased by 34.06%. MDA content was significantly increased by 37.44%; Photosynthetic gas exchange parameters Pn and Gs of IL7-5-5 tomato seedlings significantly decreased by 27.78% and 78.87%, Tr significantly decreased by 69.05%, WUE significantly increased by 128.17%, GR and SOD activity significantly increased, and O-2 production rate significantly decreased by 25.30%.
【Conclusion】 """Both tomato varieties can achieve the effect of eliminating O-2 and H2O2 by adjusting the activity of antioxidant enzymes. The content of MDA of IL7-5-5 tomato seedlings is maintained at the control level, and the degree of membrane lipid peroxidation is lighter than that of M82 tomato varieties. Under the three stress conditions, the photosynthetic rate of tomato seedlings decrease, and the alkali stress is the lowest in both varieties. Both alkali and saline-alkali stress causes membrane lipid peroxidation damage to M82 tomato seedlings to a certain extent. Stress can regulate the activity of antioxidant enzymes and the contents of O-2 and H2O2 in the leaves of the two tomato varieties to different degrees. The contents of H2O2 are the lowest in both tomato varieties under salt stress, followed by alkali stress and saline-alkali stress.
Key words:""tomato; salt stress; alkali stress; compound saline-alkali stress; photosynthetic characteristics; enzyme activity
Fund projects:""Natural Science Foundation of Xinjiang Uygur Autonomous Region( 2022D01B168); Youth Fund Project of Xinjiang Academy of Agricultural Sciences (xjnkq - 2023010); "Major Science and Technology Projects of Xinjiang (2022A02005-2); "XJARS-Vegetable(XJARS-07-01,XJARS-07-04);Tianshan Talents-Science and technology Innovation Leading Talent project(2023TSYCLJ0013)
Correspondence author:"""WANG Qiang (1983-), male, from Gansu, researcher associate, research direction: physiology and stress of vegetable cultivation in facilities, "(E-mail)wangqiang201004@sina.com
WANG Hao (1970-), male, from Shandong, researcher, research direction: facility vegetable cultivation and physiology, "(E-mail)wanghao183@163.com
收稿日期(Received):
2024-04-13
基金项目:
新疆维吾尔自治区自然科学基金青年科学基金项目(2022D01B168);新疆农业科学院青年科技骨干创新能力培养项目(xjnkq-2023010);新疆维吾尔自治区重大科技专项(2022A02005-2);新疆蔬菜产业技术体系(XJARS-07-01,XJARS-07-04);天山英才-科技创新领军人才(2023TSYCLJ0013)
作者简介:
刘会芳(1989-),女,河南人,助理研究员,硕士研究生,研究方向为蔬菜栽培和逆境生理,(E-mail)568899051@qq.com
通讯作者:
王强(1983-),男,甘肃人,研究员,研究方向为设施蔬菜栽培生理与逆境胁迫,(E-mail)wangqiang201004@sina.com
王浩(1970-),男,山东人,研究员,研究方向为设施蔬菜栽培与生理,(E-mail)wanghao183@163.com