摘 要:【目的】微生物菌剂的作用效果受作物及生态环境的影响较大,筛选适应新疆土壤类型及气候特点的具有促生长、抗倒伏和耐受生物或非生物胁迫等作用的功能菌株,为新疆干旱区农业微生物资源收集与挖掘提供依据。
【方法】采用浸种方式进行小麦盆栽试验,测定单菌及其组合对小麦生长和生理特性的影响。
【结果】从新疆不同生态环境土壤中分离得到9株具有促生功能的菌株,均有不同程度的耐盐碱、耐干旱等特性。在轻度盐碱土中,9株菌小麦发芽率增幅为6.67%~33.33%,株高为6.91%~54.09%,鲜重为15.74%~75.32%,叶绿素含量为27.03%~143.87%;8株菌提高了小麦植株具抗病性的苯丙氨酸解氨酶(PAL)酶活,增幅为18.06%~89.59%;5株菌提高了小麦植株具抗逆性的过氧化物酶(POD)酶活;3株菌增加了小麦植株与抗倒伏特性相关的木质素含量,分别提高了19.10%、13.77%和8.43%。结合促生、抗倒伏、抗逆性等功能,对其中3株具有不同功能的菌株Y24(类芽孢杆菌属)、SD5(芽孢杆菌属)、L6(盐单胞菌属)进行组合。组合后SD5-L对小麦生长和生理特性的总体效果最佳。发芽率和鲜重较SD5和L6单菌分别增加7.15%和0.00%、133.33%和1.23%,叶绿素、木质素含量分别增加了100.00%和92.03%、5.34%和2.45%,PAL、POD酶活性分别增加了8.25%和44.80%、4.13%和-6.04%。
【结论】在新疆干旱区轻度盐碱胁迫下,促生菌组合后小麦未明显增加株高,但发芽率、鲜重、光合作用、抗倒伏和抗病性等功能效果显著优于单一菌株,不同菌株之间能够协同增效。芽孢杆菌属和盐单胞菌属组合可以发挥菌株更大作用,可促进小麦生长和提高植株的抗逆性。
关键词:小麦;功能菌株;合成菌群;促生评价
中图分类号:S-188;S512"" 文献标志码:A"" 文章编号:1001-4330(2024)12-2890-12
0 引 言
【研究意义】小麦是新疆重要的粮食作物,2020年新疆小麦种植面积达106.9×104 hm2,总产582.09×104 t,单产5 445.18 kg/hm2,居全国第6位[1]。新疆属干旱半干旱地区、温带大陆性荒漠气候[2],该区域农田受盐渍化、次生盐渍化和干旱胁迫的土壤面积较大[3-4],低温冷冻、高温、热干风、沙尘和冰雹等农业气象灾害频发[5],施肥结构、比例、分配等是影响小麦抗逆性、品质、化肥利用率的因素[6]。因此,结合小麦种植区气候条件、土壤情况等因素,筛选优质品种、合理调节种植密度、规范小麦种植技术、科学合理施肥,对提高小麦质量、促进小麦高产具有重要意义。【前人研究进展】收集和挖掘新疆干旱、盐碱区域特有的、能较好适应其特殊生态环境的促生菌,有利于干旱区农业绿色高效生产[7-8]。促生菌具有分泌植物激素、改善生物或非生物胁迫环境,增强作物抗病害、抗倒伏、防早衰等能力,将土壤中作物难以利用的物质转化为可以吸收的养分、提高土壤微生物多样性,进而促进植物生长、提升产量和品质及维持土壤生态健康等[9-10]。分离自盐碱地碱蓬根际土的克锡勒氏细菌,可苗期促进小麦生长发育,且对根系分泌的部分有机酸影响显著,草酸和酒石酸可能在微生物-植物互作中具有重要作用[11]。较高固氮酶活性、溶磷特性和促生长作用的巴西固氮螺菌可提高小麦对氮素的吸收[12]。接种丛枝菌根真菌和植物根际促生菌,可调节小麦应对干旱的生理生化过程,增加生物量,提高植株脯氨酸合成量和叶片抗氧化酶活性[13]。枯草芽孢杆菌和蜂房类芽孢杆菌能诱导小麦植株增加酚类化合物(类黄酮、羟基肉桂酸HCAs和HCA酰胺),进而启动对条锈病感染的系统抗性[14]。金黄杆菌属可高效去除土壤中DDT等污染物,具有多条高效合成IAA的代谢途径,促生效果明显[15]。荧光假单胞菌产铁载体,可促进小麦根系生长增加Ni的积累,但籽粒和秸秆中无显著变化,并改善植株矿质营养[16]。【本研究切入点】促生菌的应用效果具有区域特异性,受土壤类型和微生物群落、生态环境等因素的影响,选用本地有益微生物可改善植物-细菌相互作用,与商业促生菌相比,对土壤微生物的不利影响最小[17]。新疆特殊干旱区具有独特多样的生态环境,拥有形态各异、种类丰富、功能众多的微生物资源,研究和开发价值较大[18-21]。【拟解决的关键问题】从新疆特殊环境微生物资源库中辐射污染、盐碱、干旱等不同生态地区及盐生植物根际土壤筛选并保存的土著促生细菌中,挖掘适合新疆干旱生态区具有小麦促生长、抗倒伏和抗盐碱、干旱等逆境功能的微生物菌株,并进行组合,为提升新疆特殊环境微生物资源开发利用提供基础理论依据。
1 材料与方法
1.1 材 料
1.1.1 菌 株
所用菌株为新疆农业科学院微生物应用研究所特殊环境微生物资源库从新疆相关荒漠、农田等生态区筛选并保存的土壤及盐生植物、棉花和核桃等根际土壤,前期已进行耐盐碱、耐旱、ACC脱氨酶、解磷、解钾、固氮、产IAA等功能验证[22],具有促生功能及生态适应性的细菌菌株。表1
1.1.2 土 样
供试土样采自新疆农业科学院综合试验场,土壤类型为灰漠土,土壤基础理化性质:有机质22.2 g/kg、速效氮81.7 mg/kg、速效磷64.1 mg/kg、速效钾25.4 mg/kg、总盐2.5 g/kg、电导率0.6 mS/cm和pH 8.1,为轻度盐碱土。
1.1.3 主要培养基
功能菌株常规分离、培养选用由青岛高科园海博生物技术有限公司生产营养琼脂(NA)培养基和营养肉汤(NB)培养基。其中,NA培养基:蛋白胨10.0 g,牛肉粉3.0 g,NaCl 5.0 g,琼脂15.0 g,H2O 1 000 mL,pH 7.3。NB培养基:蛋白胨10.0 g,牛肉膏5.0 g,NaCl 5.0 g,H2O 1 000 mL,pH 7.2。解磷菌筛选培养基包括PKO固体培养基和蒙金娜固体培养基;解钾菌筛选培养基为钾长石粉固体培养基;合成IAA菌株筛选培养基及试剂包括改良的NB液体培养基(含L-色氨酸80 mg/L)、Salkowski比色液;耐盐测定培养基为10%NaCl浓度的基础培养基;耐碱测定培养基为pH 9的基础培养基;采用30%浓度聚乙二醇( PEG 6000) 配制耐干旱培养基[23]。
1.2 方 法
1.2.1 菌种活化及斜面保存
将特殊环境微生物资源库保存的功能菌株干粉管,用无菌水溶解后,以划线法接种于含2%NaCl的NA培养基上,待菌液吸收完全后,倒置于30℃培养箱中培养2~7 d,验纯后将单菌落转接至2% NaCl的NA培养基斜面上,4℃保存备用。
1.2.2 单菌株施用对小麦促生、抗病、抗倒伏、抗逆境等功能作用
将活化后的单菌落接种于含2% NaCl的NB液体培养基中,于30℃、180 r/min 振荡培养48 h后,发酵液于10 000 r/min离心10 min后,弃去上清液,采用无菌水调节菌悬液OD600值为0.04左右,使菌数量保持一致。选择颗粒饱满且无明显破损的小麦种子(新春6号),使用0.1%的升汞消毒5 min,无菌水洗净后,浸于菌悬液4 h。采用盆栽方式,设计麦种接菌和不接菌试验处理。将菌液和对照处理的种子每20粒播入装有2.5 kg土的20 cm×10 cm×10 cm花盆中,播种深度3 cm,于自然环境下生长至成熟期,测量试验组和对照组小麦植株的形态学参数(发芽率、结穗率、株高、地上部分鲜重和干重、茎秆木质素含量、叶片叶绿素含量、苯丙氨酸解氨酶和过氧化物酶活性)。
株高采用皮尺测量,取小麦整株地上部分,用电子天平称量鲜重,烘干称干重。木质素含量、叶绿素含量和苯丙氨酸解氨酶(Phenylalanine ammonia lyase,PAL)和过氧化物酶(Peroxidase,POD)活性测定,均由苏州科铭生物技术有限公司使用木质素含量试剂盒、植物叶绿素试剂盒和PAL、POD酶活测定试剂盒完成,均采用比色法测定。
1.2.3 菌株组合对小麦生长及生理特性的影响
9株小麦多功能微生物菌株,根据小麦促丰产、抗倒伏、抗逆性等特性分别选择具有较好促生、防病、抗逆、促早熟及增加木质素含量等作用的菌株作为组合菌种,并采用代金霞等[24]的平板拮抗法检测不同菌株之间是否有拮抗作用。将待测的促生菌株分别作为指示菌均匀涂布至2%NaCl的NA培养基上,将灭菌后的滤纸片间隔一定距离放置在涂有指示菌的平板上,将其它测试菌株的发酵液分别滴至滤纸片上,30℃培养5~7 d后,观察菌株之间是否有拮抗作用。选择相互协同或无拮抗作用的功能菌株分别扩培后,按两两组合的方式,以1∶1混合配制成复合菌液。盆栽试验同单菌试验,于自然环境下生长至成熟期,测量小麦植株的各种形态学参数,包括发芽率、结穗率、株高、地上部分鲜重、干重和植株生理特性(叶绿素、木质素、PAL酶和POD酶)。
1.3 数据处理
数据采用DPS v9.50版软件单因素方差分析(one-way ANOVA)中最小显著差数法(LSD)进行多重比较和差异显著性检验(Plt; 0.05)。采用TOPSIS分析法(逼近理想解排序法)综合评价小麦生长和植株生理特性指标,确定最佳菌株及其组合。采用WPS office 2016软件处理试验数据和绘制图表。
2 结果与分析
2.1 促生菌株活化及功能验证
研究表明,对新疆特殊环境微生物资源库保存的具有耐盐、耐旱、促生等功能特性的细菌菌株进行整理和活化,培养3~7 d后,将所得菌株保存于2% NaCl的NA培养基斜面上。结合前期试验,将具有促生、抗倒伏和抗逆境等生理功能作用的20株菌通过小麦盆栽试验,筛选获得9株具有较好促生功能的菌株。
2.2 功能性菌株对小麦生长的影响
研究表明,与CK处理相比,促生菌浸种小麦发芽率显著增加了6.67%~33.33%,其中菌株R11发芽率为100%。统计第1株小麦开始结穗后5 d不同菌株的结穗率,6株菌促进小麦早熟的作用,显著增加了33.33%~266.67%,其中菌株L6作用效果最佳。大部分菌的作用效果均很明显,鲜重显著增加了15.74%~75.32%,株高增加了6.91%~54.09%,其中L6处理的小麦植株鲜重和株高增加效果均较好,分别显著增加了62.13%和53.35%。表2
2.3 功能性菌株对小麦植株叶绿素和木质素含量的影响
研究表明,9株菌均具有明显提高小麦叶绿素含量的作用,增加了27.03%~143.87%,其中K27、L6和R10处理增加效果较佳,叶绿素含量分别增加了143.87%、114.55%和98.73%。
与CK处理相比,K27、Y24、SD5处理有增加小麦木质素含量的作用,分别增加了19.10%、13.77%和8.43%。图1
2.4 功能性菌株对小麦植株防御性保护酶活性的影响
研究表明,PAL酶活除P4低于CK处理外,其余8株菌均显著增加了18.06%~89.59%,其中K27和R10处理提升效果最显著,酶活分别增加了89.59%和61.62%。
与CK处理相比,Y24、L6、MM18、R11、P4处理提高了小麦植株POD酶活。图2
2.5 功能菌株组合初步筛选
研究表明,选择具有较好促生、防病、抗逆、促早熟及增加木质素含量等作用的5株菌作为组合菌种,5株菌分别为Y24、R11、SD5、L6和K27。5株菌之间互相无拮抗作用。与CK处理相比,5株菌均有较好发芽率和促生效果,促早熟作用以K27、Y24、L6和R11效果较佳,抗倒伏以K27、SD5和Y24作用效果较佳,抗病性以K27、SD5和R11作用效果较佳,抗逆性以Y24、L6和R11效果较佳。
Y24-R11、R11-K27、SD5-L6和L6-K27两两组合方式的发芽率略高于CK处理,其余组合未增加小麦发芽率,而R11-L6组合发芽率则降低了16.67%。与CK处理相比,结穗率SD5-L6和L6-K27组合达95%和90%,L6-K27组合略高于CK处理。株高除Y24-SD5、Y24-L6、SD5-L6和SD5-K27组合与CK处理差异不显著,其余均降低,最低下降了25.82%(R11-L6组合)。小麦干重Y24-SD5、Y24-L6和SD5-L6组合分别增加了22.69%、3.24%和8.33%,其余则降低。木质素含量各组合处理均高于CK处理,增加了5.24%~36.05%。选择既要较快生长、促进早熟,又要有较好抗倒伏、抗逆性等能力的微生物组合方式。选择3组组合方式,分别为Y24-SD5、Y24-L6和SD5-L6,其中以SD5-L6效果最佳,株高无增加,但发芽率、干重和木质素含量增加,结穗率也较好。表3
2.6 功能性菌株组合对小麦植株生长及生理特性的影响
研究表明,单菌和组合对小麦发芽率总体无太大影响,但小麦株高和鲜重不同菌株和组合有差异。与CK相比,株高增加了1.64%~18.42%,其中Y24-SD5-L6三者组合效果最佳,为18.42%,其次是L6-Y24组合,为9.25%,其余差异均不显著。鲜重增加了9.19%~65.72%,其中L6-Y24组合效果最佳,为65.72%,其次为Y24-SD5-L6、Y24和Y24-SD5,分别增加了57.95%、55.83%和50.88%。表4
2.6.1 功能性菌株组合对小麦植株叶绿素和木质素含量的影响
研究表明,菌株Y24叶绿素含量提升效果最好,与CK处理相比,显著增加了71.21%;菌株两两组合L6-Y24、Y24-SD5和SD5-L6分别显著增加了42.16%、56.04%和48.59%;但3株菌组合叶绿素含量差异不显著。
功能菌株及其组合均可以提高小麦植株木质素含量,增加了6.50%~17.27%,以SD5和Y24-SD5的含量最高,分别显著增加了17.17%和17.27%;其次是Y24和SD5-L6,分别显著增加了10.66%和10.91%。图3
2.6.2 功能性菌株对小麦植株防御性保护酶活性的影响
研究表明,与CK处理相比,功能菌株及其组合PAL酶活增加了2.33%~48.99%,其中SD5-L6显著增加了48.99%,其次SD5、L6-Y24和Y24-SD5-L6分别显著增加了37.64%、32.61%和30.79%。与CK处理相比,L6提升效果最佳,显著增加了16.50%;其次是SD5-L6,显著增加了9.46%;其它处理差异不显著或显著降低。图4
2.6.3 基于TOPSIS法综合评价功能菌株及其组合对小麦生长的效应
研究表明,小麦各处理的贴近度Ci从优到劣依次为SD5-L6处理gt;Y24处理gt;L6-Y24处理gt;Y24-SD5处理gt;Y24-SD5-L6处理gt;L6处理gt;SD5处理gt;CK处理。其中SD5-L6处理综合性能最佳,统计量为 0.742,其次是Y24和L6-Y24,统计量分别为0.666和0.660。SD5-L6组合小麦发芽率、株高和鲜重较CK处理分别增加7.15%、3.24%和45.58%,叶绿素、木质素含量和PAL、POD酶活性分别增加了48.59%、10.91%和48.99%、9.46%。较SD5和L6单菌,小麦发芽率、株高和鲜重分别增加7.15%和0.00%、-2.02%和0.51%、133.33%和1.23%,叶绿素、木质素含量分别增加了100.00%和92.03%、5.34%和2.45%,PAL、POD酶活性分别增加了8.25%和44.80%、4.13%和-6.04%。组合后小麦无明显增加株高,但发芽率、鲜重、叶绿素含量、抗倒伏和抗病性等功能效果显著优于单一菌株。采用功能菌及其组合浸种能够促进小麦生长,且不同功能菌株组合处理对小麦生长和生理特性的总体效果好于单菌处理。表5
3 讨 论
3.1 叶绿素作为衡量植株生长的生理指标,直接参与植物光合作用,促进有机物质积累,进而影响植株的生长速度,提高作物品质,其含量受植物自身遗传因素和外界环境(光、温、水、肥等)因素共同影响[25]。
小麦抗倒伏能力不仅与茎秆机械强度,还和株高关系密切,适当降低株高可以提高作物抗倒伏能力。但植株生物量是作物高产的物质基础,如果仅单纯降低株高,难以同步实现作物高产和抗倒伏。木质素能提高细胞壁硬度、机械支持力、抗压强度,还能促进机械组织形成,常作为研究作物抗倒伏的切入点和关键因素。因此增加木质素含量,增强茎秆机械强度是实现作物抗倒伏能力提高的有效途径[26]。
PAL酶能促进苯丙烷类代谢、产生包括黄酮、黄酮醇、木脂素、香豆素、花青素、花色素苷、肉桂酸及大分子化合物木质素等聚酚类化合物,对植物生长调节、次生代谢物合成和抗逆抗虫抗病性等起着重要作用[27]。
POD酶广泛存在于植物各组织和器官中,是植物清除H2O2的重要抗氧化酶,能够促进植株在逆境条件下(包括抗旱、抗寒、抗盐、抗病等)生长发育,可以了解植物生长发育及代谢状况[28]。
由于单株菌在促生功能和环境适应上存在一定局限性,因此将具有不同促生功能的菌株组合施用,根据不同菌在土壤中的存活和定殖,代谢途径上相互作用,构建兼容、稳定、协同增强有益功能和环境耐受性的人工合成菌群,已成为目前的研究热点方向[29]。
施用化肥可以提高中低产田土壤肥力,但也会对土壤生态系统产生如施用过量、次生盐渍化等负面影响,在保障小麦生长和产量持续稳定提升以及耕地土壤环境不受破坏的前提下,利用促生菌可提高小麦对生物及非生物胁迫的耐受性,改善植物对土壤养分吸收利用,促进小麦生长发育[30-31]。因此,分离适应新疆盐碱土壤及干旱气候条件的优良菌株将对菌肥开发和利用具有重要意义[20,32]。
试验筛选的9株促生菌均在新疆不同生态环境中广泛分布,生长良好、可分泌多种酶和激素等,呈现多样性的作用机制,促生菌的多重促生特性在植物对抗逆境胁迫中发挥着重要作用。盐单胞菌和叶杆菌属具有较好的耐盐碱和干旱能力,能在盐胁迫下促进小麦幼苗的发芽率和根长[33-34],但无解磷、解钾和固氮能力。从盐生植物中华补血草组织和盐爪爪根际分离出的白蚁菌属、芽孢杆菌属和类芽孢杆菌具有解磷、解钾、固氮和产IAA等多项促生功能,可提高土壤肥力,促进植物生长,保护植物免受盐胁迫[35-37]。而中华微杆菌属、藤黄单胞菌、植物杆菌属也具有多种功能[38-40],但耐旱能力相对弱一些。而中慢生根瘤菌属则具有较强的固氮作用[41],但无解磷、解钾和产ACC脱氨酶能力。目前9株促生菌中有些尚未见用于新疆地区小麦促生的报道,通过研究,将为后续从耐多种胁迫、新疆生态环境适应特性及从基因角度揭示其促生机理奠定一定的基础。
3.2
9株促生菌均能提高小麦植株叶绿素含量,但不同菌株促进作用效果有差异,这可能与菌种代谢产物浓度和在土壤中定殖能力等密切相关。由于新疆滴灌小麦种植密度高,水肥供给充足,使根系分布较浅且生长旺盛,在一定程度上降低了小麦的抗倒伏能力,是制约新疆小麦产量提高的重要因素。前期研究表明微生物在一定程度上能提高小麦的抗倒伏能力,进而增加了小麦产量[42],研究表明叶杆菌属、类芽孢杆菌属和芽孢杆菌属也促进小麦具有较高的抗倒伏能力。由于新疆存在多种恶劣环境的胁迫,促生菌还可通过激活体内抗氧化酶活性和系统抗性来提高小麦对环境胁迫的适应性,进而促进其生长。研究中类芽孢杆菌、盐单胞菌、中华微杆菌、白蚁杆菌均有提高小麦植株PAL和POD活性的作用。类芽孢杆菌菌株通过诱导调节以PAL和POD基因表达为特征的防御机制潜力,对植株起保护作用[43]。在盐碱胁迫下施用根瘤菌可提高甘草多酚氧化酶(PPO)、过氧化物酶(POD)和苯丙氨酸解氨酶(PAL)活性,缓解盐胁迫[44]。其它菌株在提高作物防御性保护酶方面还未见报道。
3.3
促生菌及其复合菌群在盐碱、干旱地区小麦种植中也得到很好的应用[45-46]。结合菌株资源竞争、拮抗竞争能力或其他有益特性,以及多个营养级别微生物间的协同效应,确保有益菌群施用后能更好地适应环境和发挥有益功能,是当下提高合成菌群稳定性和功能性的重要手段[47]。试验复筛得到3株对小麦分别具有高效促生、拮抗、促早熟、抗倒伏等功能的微生物菌株。由于单一菌株对植物促生、防病等效果较低,且稳定性不高,故将3株菌两两组合进行复筛。3株菌中Y24为一株耐辐射类芽孢杆菌新菌种,其余2株菌均从耐盐植物盐爪爪根际分离获得,分别为芽孢杆菌属(SD5)和盐单胞菌属(L6)。组合后SD5-L6浸种处理对小麦生长和生理特性的总体效果最好。说明组合后不同菌株之间能够协同增效,小麦发芽率、鲜重、叶绿素含量、抗倒伏和抗逆等功能效果显著优于单一菌株。由于3株菌及其组合处理适宜于新疆地理气候条件,可应用到作物促进生长中。多菌株混合接种的促生效果不一定比单菌株接种高,具体效果受土壤环境、菌株类型与组合不同而有所差异[48]。下一步需对菌株之间相互作用机理以及菌株与作物之间作用效果及田间应用进行更深入研究。
4 结 论
从新疆特殊环境微生物资源库中筛选出9株具有促生、抗倒伏、抗逆等功能的微生物菌株。9株菌对小麦有较好发芽率和促生效果,发芽率增幅为6.67%~33.33%,株高为6.91%~54.09%,鲜重为15.74%~75.32%,叶绿素含量为27.03%~143.87%;其中3株菌(K27、Y24、SD5)有增加小麦植株木质素含量的作用,分别提高了19.10%、13.77%和8.43%。8株菌提高了小麦植株具有抗病性的PAL酶活,提升18.06%~89.59%。5株菌(Y24、L6、MM18、R11、P4)提高了小麦植株具有抗逆特性的POD酶活。结合促生、抗倒伏、促早熟等功能,对其中3株具有不同功能的菌株Y24、SD5、L6进行组合。组合后SD5-L6浸种处理对小麦生长和生理特性的总体效果最佳。发芽率和鲜重较SD5和L6单菌分别增加7.15%和0.00%、133.33%和1.23%,叶绿素、木质素含量分别增加了100.00%和92.03%、5.34%和2.45%,PAL、POD酶活性分别增加了8.25%和44.80%、4.13%和-6.04%。利用不同功能促生菌构建合成菌群可以更有效改善新疆干旱区轻度盐碱胁迫下小麦的生长、抗倒伏和抗逆性能力。
参考文献(References)
[1]肖丽, 吴新元, 王成. 种业振兴背景下推进新疆小麦育种工作对策研究——以新疆农业科学院为例[J]. 农业科技管理, 2022, 41(5): 17-20.
XIAO Li, WU Xinyuan, WANG Cheng. Studies on countermeasures of promoting wheat breeding in Xinjiang under the background of seed industry revitalization, taking Xinjiang academy of agricultural sciences as an example[J]. Management of Agricultural Science and Technology, 2022, 41(5): 17-20.
[2] 高晓宇, 郝海超, 张雪琪, 等. 中国西北干旱区植被水分利用效率变化对气象要素的响应——以新疆为例[J]. 干旱区地理, 2023, 46(7): 1111-1120.
GAO Xiaoyu, HAO Haichao, ZHANG Xueqi, et al. Responses of vegetation water use efficiency to meteorological factors in arid areas of Northwest China: a case of Xinjiang[J]. Arid Land Geography, 2023, 46(7): 1111-1120.
[3] 李菲菲, 周霞, 周玉玺. 西北地区农业干旱脆弱性评估及时空分布特征[J]. 干旱区研究, 2023, 40(4): 663-669.
LI Feifei, ZHOU Xia, ZHOU Yuxi. Vulnerability assessment and spatiotemporal distribution of agricultural drought in Northwest China[J]. Arid Zone Research, 2023, 40(4): 663-669.
[4] 王相平, 杨劲松, 张胜江, 等. 改良剂施用对干旱盐碱区棉花生长及土壤性质的影响[J]. 生态环境学报, 2020, 29(4): 757-762.
WANG Xiangping, YANG Jinsong, ZHANG Shengjiang, et al. Effects of different amendments application on cotton growth and soil properties in arid areas[J]. Ecology and Environmental Sciences, 2020, 29(4): 757-762.
[5] 李红丽. 新疆农业气象灾害对棉花生长的影响及防范措施[J]. 智慧农业导刊, 2022, 2(10): 22-24.
LI Hongli. The impact of agricultural meteorological disasters in Xinjiang on cotton growth and preventive measures [J]. Journal of Smart Agriculture, 2022, 2(10): 22-24.
[6] 汤明尧, 沈重阳, 陈署晃, 等. 新疆小麦、玉米的产量和氮磷钾肥利用效率[J]. 中国农业科学, 2022, 55(14): 2762-2774.
TANG Mingyao, SHEN Chongyang, CHEN Shuhuang, et al. Yield of wheat and maize and utilization efficiency of nitrogen, phosphorus and potassium in Xinjiang[J]. Scientia Agricultura Sinica, 2022, 55(14): 2762-2774.
[7] 左筱筱, 颜安, 宁松瑞, 等. 盐碱麦田生物有机肥促生增产培肥效果[J]. 新疆农业科学, 2023, 60(10): 2532-2540.
ZUO Xiaoxiao, YAN An, NING Songrui, et al. Study on the effect of Bio-Organic fertilizer on promoting growth and increasing yield in saline alkali wheat field[J]. Xinjiang Agricultural Sciences, 2023, 60(10): 2532-2540.
[8] Soares E V, Petropoulos S A, Soares H M V M. Editorial: Bio-based solutions for sustainable development of agriculture[J]. Frontiers in Plant Science, 2022, 13: 1056140.
[9] 贺文婧, 陆旭桐, 蒋毅宁, 等. 植物根际促生菌研究文献计量分析[J]. 土壤通报, 2023, 54(4): 978-988.
HE Wenjing, LU Xutong, JIANG Yining, et al. Research of plant growth promoting rhizobacteria(PGPR)based on knowledge graph analysis and its development trend[J]. Chinese Journal of Soil Science, 2023, 54(4): 978-988.
[10] Cao M Y, Narayanan M, Shi X J, et al. Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation[J]. Environmental Research, 2023, 217: 114924.
[11] 苑霖, 王新珍, 孙宏勇, 等. 一株克锡勒氏菌对小麦苗期的促生耐盐效应研究[J]. 中国生态农业学报(中英文), 2021, 29(11): 1913-1920.
YUAN Lin, WANG Xinzhen, SUN Hongyong, et al. Growth promotion and mitigation of salt stress in wheat seedlings by a Kushneria bacterium[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1913-1920.
[12] Galindo F S, Pagliari P H, Buzetti S, et al. Interactive effect of silicon application and Azospirillum brasilense inoculation on wheat nutrient uptake and accumulation combined with N application rates[J]. Journal of Plant Nutrition, 2023, 46(16): 3954-3968.
[13] Ikan C, Ben-Laouane R, Ouhaddou R, et al. Co-inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria can mitigate the effects of drought in wheat plants (Triticum durum)[J]. Plant Biosystems - an International Journal Dealing with All Aspects of Plant Biology, 2023, 157(4): 907-919.
[14] Mashabela M D, Tugizimana F, Steenkamp P A, et al. Metabolomic evaluation of PGPR defence priming in wheat (Triticum aestivum L.) cultivars infected with Puccinia striiformis f.sp. tritici (stripe rust)[J]. Frontiers in Plant Science, 2023, 14: 1103413.
[15] 刘缨, 王梦雨, 陈国参, 等. DDT降解菌株Chryseobacterium sp. PYR2对小麦的促生作用及其机理[J]. 微生物学通报, 2019, 46(6): 1346-1355.
LIU Ying, WANG Mengyu, CHEN Guocan, et al. Plant growth-promoting effect and its mechanism of the DDT-degrading strain PYR2[J]. Microbiology China, 2019, 46(6): 1346-1355.
[16] Shabayev V P, Ostroumov V E. Spring wheat yield under application of growth-promoting rhizobacterium in soil contaminated with nickel[J]. Russian Agricultural Sciences, 2023, 49(2): 158-163.
[17] Jofre M F, Mammana S B, Appiolaza M L, et al. Melatonin production by rhizobacteria native strains: Towards sustainable plant growth promotion strategies[J]. Physiologia Plantarum, 2023, 175(1): e13852.
[18] 潘宇, 张昊, 李湘, 等. 耐盐促生菌与其复合菌剂对盐胁迫狼尾草生长及生理生化的影响[J]. 贵州农业科学, 2023, 51(7): 39-49.
PAN Yu, ZHANG Hao, LI Xiang, et al. Effect of salt-tolerant and growth-promoting bacteria and composite microbial agent on growth and Physicoch-emical of Pennisetum alopecuroides under salt stress[J]. Guizhou Agricultural Sciences, 2023, 51(7): 39-49.
[19] 王改萍, 祝长青, 王茹. 一株耐盐甲基杆菌Methylobacterium sp. W-1的分离及促生潜能研究[J]. 微生物学通报, 2021, 48(11): 4134-4144.
WANG Gaiping, ZHU Changqing, WANG Ru. Isolation and growth-promoting potential of a salt tolerant strain of Methylobacterium sp. W-1[J]. Microbiology China, 2021, 48(11): 4134-4144.
[20] Yuan Y, Shi Y L, Liu Z Z, et al. Promotional properties of ACC deaminase-producing bacterial strain DY1-3 and its enhancement of maize resistance to salt and drought stresses[J]. Microorganisms, 2023, 11(11): 2654.
[21] Zhang H, Yang Q L, Zhao J J, et al. Metabolites from Bacillus subtilis J-15 affect seedling growth of Arabidopsis thaliana and cotton plants[J]. Plants, 2022, 11(23): 3205.
[22] 张志东, 顾美英, 唐琦勇, 等. 盐爪爪根际耐盐促生菌的筛选及穴栽验证[J]. 中国农业科技导报, 2021, 23(3): 186-192.
ZHANG Zhidong, GU Meiying, TANG Qiyong, et al. Screening of salt-tolerant and growth-promoting bacteria in the rhizosphere of Kalidium foliatum and the functional identification in pot experiments[J]. Journal of Agricultural Science and Technology, 2021, 23(3): 186-192.
[23] 陈腊, 米国华, 李可可, 等. 多功能植物根际促生菌对东北黑土区玉米的促生效果[J]. 应用生态学报, 2020, 31(8): 2759-2766.
CHEN La, MI Guohua, LI Keke, et al. Effects of multifunctional plant rhizosphere promoting bacteria on maize growth in black soil areas in Northeast China[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2759-2766.
[24] 代金霞, 田平雅, 沈聪, 等. 耐盐植物根际促生菌筛选及促生效应研究[J]. 生态环境学报, 2021, 30(5): 968-975.
DAI Jinxia, TIAN Pingya, SHEN Cong, et al. Screening of rhizosphere bacteria from salt tolerant plants and their growth promoting effects[J]. Ecology and Environmental Sciences, 2021, 30(5): 968-975.
[25] 黄键, 王德新, 杨松, 等. 氮磷叶面喷施对云南松苗木叶绿素含量及其异速生长关系的影响[J]. 西南林业大学学报(自然科学), 2023, 43(3): 33-41.
HUANG Jian, WANG Dexin, YANG Song, et al. Effect on chlorophyll content and allometric growth relationship of Pinus yunnanensis seedlings by foliar spraying of nitrogen and phosphorus[J]. Journal of Southwest Forestry University (Natural Sciences), 2023, 43(3): 33-41.
[26] Wang L M, Xi N, Lang D Y, et al. Potential biocontrol and plant growth promotion of an endophytic bacteria isolated from Glycyrrhiza uralensis seeds[J]. Egyptian Journal of Biological Pest Control, 2022, 32(1): 55.
[27] Najafi Zilaie M, Mosleh Arani A, Etesami H, et al. Halotolerant rhizobacteria enhance the tolerance of the desert halophyte Nitraria schoberi to salinity and dust pollution by improving its physiological and nutritional status[J]. Applied Soil Ecology, 2022, 179: 104578.
[28] 李艳燕, 赵彩桐, 齐阳阳, 等. 大豆主茎木质素积累规律分析[J]. 华北农学报, 2022, 37(3): 77-85.
LI Yanyan, ZHAO Caitong, QI Yangyang, et al. Analysis on the accumulation of lignin in the stem of soybean[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(3): 77-85.
[29] Nishra J, Meenu S, Kumar J C, et al. Harnessing the efficacy of multifunctional rhizobacterial consortia for promoting the growth of Anethum graveolens L.[J]. Frontiers in Sustainable Food Systems, 2023, 7: 1126621.
[30] Yaghoubi Khanghahi M, AbdElgawad H, Verbruggen E, et al. Biofertilisation with a consortium of growth-promoting bacterial strains improves the nutritional status of wheat grain under control, drought, and salinity stress conditions[J]. Physiologia Plantarum, 2022, 174(6): e13800.
[31] 王丹, 赵亚光, 张凤华. 耐盐促生菌筛选、鉴定及对盐胁迫小麦的效应[J]. 麦类作物学报, 2020, 40(1): 110-117.
WANG Dan, ZHAO Yaguang, ZHANG Fenghua. Screening and identification of salt-tolerant plant growth-promoting bacteria and its promotion effect on wheat seedling under salt stress[J]. Journal of Triticeae Crops, 2020, 40(1): 110-117.
[32] Yue H T, Sun S W, Wang R Q, et al. Study on the mechanism of salt relief and growth promotion of Enterobacter cloacae on cotton[J]. BMC Plant Biology, 2023, 23(1): 656.
[33] 孙雪, 董永华, 王娜, 等. 耐盐碱促生菌的筛选及性能[J]. 生物工程学报, 2020, 36(7): 1356-1364.
SUN Xue, DONG Yonghua, WANG Na, et al. Screening and evaluation of saline-alkali-tolerant and growth-promoting bacteria[J]. Chinese Journal of Biotechnology, 2020, 36(7): 1356-1364.
[34] Flores-Félix J D, Velázquez E, Martínez-Molina E, et al. Connecting the lab and the field: genome analysis of Phyllobacterium and Rhizobium strains and field performance on two vegetable crops[J]. Agronomy, 2021, 11(6): 1124.
[35] Qin S, Zhang Y J, Yuan B, et al. Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress[J]. Plant and Soil, 2014, 374(1): 753-766.
[36] 贾峥嵘, 郝佳丽, 郝艳芳, 等. 4种促生菌剂对甘薯生长及土壤肥力的影响[J]. 干旱区资源与环境, 2022, 36(9): 166-172.
JIA Zhengrong, HAO Jiali, HAO Yanfang, et al. Effects of four growth-promoting bacteria on the growth of sweet potato and soil fertility[J]. Journal of Arid Land Resources and Environment, 2022, 36(9): 166-172.
[37] Yuan L F, Jiang H, Jiang X L, et al. Comparative genomic and functional analyses of Paenibacillus peoriae ZBSF16 with biocontrol potential against grapevine diseases, provide insights into its genes related to plant growth-promoting and biocontrol mechanisms[J]. Frontiers in Microbiology, 2022, 13: 975344.
[38] Riyanti, Zumkeller C M, Spohn M, et al. Draft genome sequence of Sinomicrobium sp. strain PAP.21, isolated from a coast sample of Papua, Indonesia[J]. Microbiology Resource Announcements, 2023, 12(4): e0126822.
[39] Wang Z G, Piao Y J, Zhang F G, et al. Promoting effects on watermelon and fermentation optimization of Plantibacter sp. WZW03[J]. Journal of Plant Growth Regulation, 2020, 39(3): 970-980.
[40] Domínguez-Castillo C, Alatorre-Cruz J M, Castaeda-Antonio D, et al. Potential seed germination-enhancing plant growth-promoting rhizobacteria for restoration of Pinus chiapensis ecosystems[J]. Journal of Forestry Research, 2021, 32(5): 2143-2153.
[41] 秦杰, 高振峰, 岳爱琴, 等. 一株晋大53号大豆中慢生根瘤菌的分离鉴定及抗逆分析[J]. 大豆科学, 2020, 39(6): 898-905.
QIN Jie, GAO Zhenfeng, YUE Aiqin, et al. Isolation, identification and stress resistance analysis of A Mesorhizobium isolated from soybean variety jinda 53[J]. Soybean Science, 2020, 39(6): 898-905.
[42] 高雁, 张永强, 张志东, 等. 功能性微生物菌剂对小麦生长和根际土壤生态的影响[J]. 新疆农业科学, 2021, 58(1): 115-124.
GAO Yan, ZHANG Yongqiang, ZHANG Zhidong, et al. Effects of functional microbial agents on wheat growth and rhizosphere soil micro-ecology[J]. Xinjiang Agricultural Sciences, 2021, 58(1): 115-124.
[43] Samain E, van Tuinen D, Jeandet P, et al. Biological control of Septoria leaf blotch and growth promotion in wheat by Paenibacillus sp. strain B2 and Curtobacterium plantarum strain EDS[J]. Biological Control, 2017, 114: 87-96.
[44] Mousavi S S, Karami A, Saharkhiz M J, et al. Microbial amelioration of salinity stress in endangered accessions of Iranian licorice (Glycyrrhiza glabra L.) [J]. BMC Plant Biology, 2022, 22(1): 322-322.
[45] Khan M Y, Nadeem S M, Sohaib M, et al. Potential of plant growth promoting bacterial consortium for improving the growth and yield of wheat under saline conditions[J]. Frontiers in Microbiology, 2022, 13: 958522.
[46] Saadaoui N, Silini A, Cherif-Silini H, et al. Semi-arid-habitat-adapted plant-growth-promoting rhizobacteria allows efficient wheat growth promotion[J]. Agronomy, 2022, 12(9): 2221.
[47] 刘艳霞, 陶正朋, 李想, 等. 抗青枯病型根际促生菌(PGPR)菌群构建及其生物防控机制[J]. 微生物学报, 2023, 63(3): 1099-1114.
LIU Yanxia, TAO Zhengpeng, LI Xiang, et al. Construction of bacterial wilt-resistant and plant growth promoting rhizobacteria (PGPR) and the mechanism of biocontrol[J]. Acta Microbiologica Sinica, 2023, 63(3): 1099-1114.
[48] Timofeeva A M, Galyamova M R, Sedykh S E. Plant growth-promoting soil bacteria: nitrogen fixation, phosphate solubilization, siderophore production, and other biological activities[J]. Plants, 2023, 12(24): 4074.
Effects of growth promoting bacteria and their combinations on the growth and physiological characteristics of wheat in arid areas of Xinjiang
GU Meiying1,2, GE Chunhui2,3, ZHU Jing1,2, TANG Qiyong1,2, Ainijiang Ersiman1,2, CHU Min1,2, TANG Guangmu2,3,YI Yuanyang1,2, XU Wanli2,3, ZHANG Zhidong1,2
(1. Xinjiang Laboratory of Special Environmental Microbiology /Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; 2. Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-alkali Land in Arid and Semi-arid Regions), MOARA, Urumqi 830091, China; 3.Institute of Soil Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China)
Abstract:【Objective】 The effect of microbial agents is greatly influenced by crop and ecological conditions, so this research aims to screen the functional strains adapted to the growth promotion, lodging resistance and biotic or abiotic stress tolerance in Xinjiang soil type and climate characteristics.To provide high-quality bacterial resources for the development of microbial fertilizers suitable for Xinjiang arid areas.
【Methods】 "Ecological adaptability studies showed that these strains had varying degrees of salt alkali and drought resistance, etc.
【Results】 "Nine strains with growth promoting functions were isolated from soils in different ecological environments in Xinjiang.The effects of single and compound bacteria on the growth and physiological characteristics of wheat were determined using seed soaking method by pot experiment.In mild saline alkali soil, the germination rate of 9 strains increased by 6.67%-33.33%, the plant height increased by 6.91%-54.09%, the fresh weight increased by 15.74%-75.32%, and the chlorophyll content increased by 27.03%-143.87%.8 strains increased the activity of phenylalanine ammonia lyase with disease resistance in wheat plants, and the increase ranged between 18.06%-89.59%.5 strains of increased the peroxidase activities with stress resistance in wheat plants.3 strains increased the lignin content related to lodging resistance in wheat plants by 19.10%, 13.77%, and 8.43%, respectively.Combining functions such as growth promotion, lodging resistance, and stress resistance, three strains of Y24 (Paenibacillus), SD5 (Bacillus), and L6 (Halomonas) with different functions of promoting growth, resisting lodging and promoting premature maturation were combined.The combination of SD5-L6 treatment had the best effect on wheat growth and physiological characteristics.Compared to SD5 and L6, the germination rate and fresh weight increased by 7.15% and 0.00%, 133.33% and 1.23%, respectively.The content of chlorophyll and lignin increased by 100.00% and 92.03%, 5.34% and 2.45%, respectively.The activity of PAL and POD enzymes increased by 8.25% and 44.80%, 4.13% and -6.04%, respectively.
【Conclusion】 Under mild saline alkali stress in arid areas of Xinjiang, wheat plant height does not increase significantly after combination, but the functional effects of germination rate, fresh weight, photosynthesis, lodging resistance, and stress resistance are significantly better than those of a single strain, which shows that different strains can synergistically increase efficiency.The combination of Bacillus and halomonas can play a greater role in promoting wheat growth and enhancing plant stress resistance.
Key words:wheat; functional strains; synthetic bacteria consortia; promoting effects
Fund projects:National Key Research and Development Program of China (2021YFD1900802); Stable Support Project of Xinjiang Academy of Agricultural Sciences (xjnkywdzc-2023002-3-2); Major Science and Technology Projects of Xinjiang Uygur Autonomous Region (2023A02012-3-5)
Correspondence author:XU Wanli (1971-), male, from Shaanxi, researcher, masters/doctoral supervisor, research direction: soil environment and ecological health, (E-mail) 363954019@qq.com
ZHANG Zhidong (1977-), male, from Xinjiang, researcher, masters supervisor, research direction: utilization of microbial resources in special environment, (E-mail) 28756401@qq.com
基金项目:国家重点研发计划项目(2021YFD1900802);新疆农业科学院稳定支持专项子课题(xjnkywdzc-2023002-3-2);新疆维吾尔自治区重大科技专项子课题(2023A02012-3-5)
作者简介:顾美英(1974- ),女,江苏无锡人,研究员,研究方向为特殊环境微生物资源利用,(E-mail) gmyxj2008@163.com
通讯作者:徐万里(1971-),男,陕西宝鸡人,研究员,硕士生/博士生导师,研究方向为土壤环境与生态健康,(E-mail)363954019@qq.com
张志东(1977- ),男,新疆乌鲁木齐人,研究员,博士,研究方向为特殊环境微生物资源挖掘,(E-mail)28756401@qq.com