摘 要:【目的】通过白星花金龟虫砂与黄萎病生防菌相结合,研究棉花黄萎病绿色防控技术,分析两者协同作用下不同施用方式对棉花生长发育及防控黄萎病的影响,为棉花黄萎病的绿色防控和棉花产业可持续发展提供参考。
【方法】设置虫砂复合枯草芽孢杆菌(LD-KC)、解淀粉芽孢杆菌(LD-JDF)、哈茨木霉(LD-HC)、中棉菌乐土(LD-ZM)4种组合,分别以虫砂复合生防菌全量基施(TBF)和虫砂基施+生防菌追施(BF+DBM)2种方式施入田间,在棉花全生育期测量生长发育和产量指标,在黄萎病发病期调查棉花黄萎病病情指数。
【结果】BF+DBM组的棉花生长发育指标(株高、茎粗、果枝始节高等)优于TBF组,以LD-JDF和LD-ZM表现较好;BF+DBM组籽棉增产效果明显,显著高于TBF组和对照组(CK),BF+DBM籽棉增产在24.37%~33.40%,LD-JDF组增产最高,增产率达33.40%,其次为LD-HC,增产率为31.10%。黄萎病发生初期,TBF组的病情指数在3.80~5.85,LD-JDF处理对棉花黄萎病的防效较高,达到44.36%,BF+DBM组病情指数在2.50~5.33,LD-HC处理下的病情指数最低,防效为63.40%,黄萎病发生后期,TBF组和BF+DBM组病情指数分别在27.00~31.67、21.67~30.83,均为JDF防效最高,分别达到19.00%、34.98%。
【结论】在棉花整个生育期内,虫砂基施+生防菌追施能有效促进棉花的生长发育,对棉花黄萎病的防治效果较佳,且增产效果较为显著,以LD-JDF增产效果最佳,虫砂基施和生防追施相结合的施用方式。
关键词:棉花黄萎病;生物防治;虫菌复合;施用方式;防病增产
中图分类号:S435.62"" 文献标志码:A"" 文章编号:1001-4330(2024)12-2861-11
0 引 言
【研究意义】棉花黄萎病是由大丽轮枝菌(Verticillium dahliae)引起的土传维管束病害,影响棉花的品质和产量,严重发生时可导致减产80%[1]。目前,防治棉花黄萎病的手段多集中在轮作倒茬、抗病育种及化学防治等,轮作倒茬和抗病品种的选育费时费力,实施过程较难[2,3]。目前生物防治被广泛应用于农业生产中,成为一种重要防治土传病害的方法之一,采用“以菌(拮抗菌/生防菌)治菌(病原菌)”是最具有发展潜力的防治手段之一[4-9]。生防菌的定殖能力决定其防治效果[10-13],增强生防菌在土壤当中的定殖、自然增殖能力是提高防效的关键[14]。【前人研究进展】刘海洋等[17]研究表明,生防菌在土壤中定殖、自然增殖能力较差,还需增施有机肥提供有机质等。棉秆经白星花金龟(Protaetia brevitarsis Lewis)幼虫过腹转化的虫砂(Larvae dung-sand,LD)氮磷钾总量为9.04%,有机质含量为54.8%,具有作为肥料应用的潜力[18,19]。张广杰等[20,21]研究表明,虫砂复合生防菌还田,在促进棉花生长发育及防控棉花黄萎病上具有初步成效。【本研究切入点】生物有机肥结合生防菌防控棉花黄萎病是当前的研究热点[15],然而,两者协同作用在棉花黄萎病防治方面的表现尚需研究[16],例如在两者的协同方式、施用方式等方面尚缺乏深入分析。需探究虫砂复合不同生防菌2种施用方式对棉花生长发育及防控黄萎病的影响。【拟解决的关键问题】设计虫砂复合4种微生物菌剂,以全量基施和虫砂基施+生防菌追施2种施用方式,虫砂复合4种棉花黄萎病生防菌,在虫砂和生防菌总施用量相同的情况下,分别以虫砂复合生防菌全量基施和虫砂基施+生防菌追施2种施用方式施入田间,探究虫砂与生防菌在不同施用方式下对棉花生长发育和黄萎病发生的影响,为虫砂和生防菌资源利用开辟新途径提供参考。
1 材料与方法
1.1 材 料
试验地选取位于新疆昌吉回族自治州玛纳斯县包家店镇新疆农业大学玛纳斯科研基地(44°13′49″N,86°23′3″E)。
白星花金龟虫砂(基地自产),棉花品种为新陆早82号(新疆华绿种业科技有限公司),棉花黄萎病菌剂购自中国农业科学院棉花研究所(菌株类型为新疆棉田常见的棉花黄萎病种,菌核型,落叶型,有效菌含量为1.0×108/g),枯草芽孢杆菌(贝莱斯芽孢杆菌,实际活菌数≥2 000×108/g),解淀粉芽孢杆菌EZ99(实际活菌数≥50×108/g),中棉菌乐土(有效成分:作物内生拮抗真菌及代谢物、地衣芽孢杆菌、淡紫紫孢菌和枯草芽孢杆菌等,有效活菌数≥30×108/g,接种量5‰),哈茨木霉微生物菌剂(浙江新农化工销售有限公司),高压灭菌锅(立式压力蒸汽灭菌器,YXC.5CS.1,上海博迅医疗生物仪器股份有限公司),叶绿素仪(TYS-B,浙江托普云农科技股份有限公司),游标卡尺(沪工数显卡尺, 0~150 mm)等基地自有。
1.2 方 法
病田按照45g/m2接种棉花黄萎病病菌,设置虫砂复合生防菌全量基施(Total base fertilizer,TBF)和虫砂基施+生防菌追施(Base fertilizer+dressing microbial agents,BF+DBM)2种施用模式;播种前虫砂作为底肥一次性施入,分别在苗期、蕾期、花期施入生防菌剂,6个处理分别为:虫砂复合枯草生防菌肥(简称LD-KC,下同);虫砂复合解淀粉生防菌肥(LD-JDF);虫砂复合哈茨生防菌肥(LD-HC);虫砂复合中棉生防菌肥(LD-ZM);虫砂(LD);空白对照(CK),3个重复(LD均以1 500 kg/hm2的重量复配)。采用随机区组设计,每个处理为4 m×2.3 m的种植小区,相邻小区之间设有0.7 m的过道,采用棉花播种机划行,将称好的虫砂生防菌肥按照小区图均匀撒施在播种带上,翻入地表,并再次平整好土地,待播种结束、棉花出苗后、调查棉花出苗率前将过道上的棉花拔除,分出小区并插牌记录。图1
出苗率调查时,每个小区随机选取膜边任一双行,在5 m行长的中间1 m,调查出苗数,按照理论播种数调查出苗率。并在中间1 m的两行上各选连续5株棉苗,作为后期棉花生长发育情况调查样本,并于苗期、盛蕾期、盛花期、盛铃期调查株高、茎粗、叶龄、叶绿素含量、果枝始节高、果枝台数和棉桃数等生长发育指标。并于收获期进行小区实收测产。待黄萎病发生初期,每10 d调查1次各种植小区样本株棉花黄萎病发生与否,并记录病级和计算病情指数。
病情指数=[∑(各级病株数×相应病级)/调查总株数×最高病级(4)]×100;(1)
防效(%)=(对照病情指数-处理病情指数)/对照病情指数×100。(2)
1.3 数据处理
运用SPSS 26.0进行单因素方差分析(One-Way ANOVA),对不同处理间的差异进行Duncan多重比较分析(Plt;0.05)。应用Microsoft Excel 记录、整理数据和绘制表格,用Origin 2022作图。
2 结果与分析
2.1 虫砂复合生防菌2种施用方式对棉花株高的影响
研究表明,虫砂复合生防菌以基施和追施2种方式还田对棉花株高的影响,苗期时,基施组LD处理表现显著性差异,追施组LD-JDF达到显著性差异水平,在蕾期,追施处理下的株高略高于基施处理,基施组中,LD达到显著性差异水平,追施组中以LD-JDF和LD-ZM表现最佳,到盛铃期,基施组的株高在83.54~90.54 cm,各处理间差异不显著,追施组的株高在85.67~100.36 cm,其中LD-KC、LD-JDF、LD-HC、LD-ZM略高于基施组,LD-JDF与同组CK相比表现显著性差异。图2
蕾期时基施处理组中,LD处理达到显著性差异水平,追施组中,LD-KC表现最佳,其次为LD-JDF和LD-ZM,追施组茎粗指标略高于基施组,到盛铃期,基施组的茎粗在8.55~9.96 mm,以LD-KC表现最佳,追施组茎粗在8.74 ~9.97 mm,LD-JDF和LD-ZM达到显著性差异水平,2种还田方式处理下的茎粗差异较小。图3
在叶龄指标上,蕾期时,基施处理下的虫砂复合生防菌无显著性差异,追施组中LD-ZM表现较好,达到显著性差异水平,其他各处理间差异不显著,整体与基施组差异不大,盛铃期时,基施组叶龄在10.27~12.03,LD-KC表现显著性差异,追施组的叶龄在11.1~12.07,各处理无显著性差异,2种还田方式对棉花茎粗影响不大。图4
在棉花蕾期,基施处理中LD对棉花的果枝始节高达到显著性差异水平,追施组的6个处理间无显著性差异,盛铃期时,基施组与追施组中各处理均未达到显著性差异,果枝始节高分别在32.49~37.22 cm、32.73~39.84 cm,追施组略高于基施组。图5
在棉花果枝台数指标中,蕾期时基施处理组LD-JDF、LD表现较好,但各处理间无显著性差异,追施组LD-ZM达到显著性差异水平,到盛铃期,基施组果枝台数范围在5.63~7.4,以LD-KC处理下的果枝台数表现最佳,其次为LD-JDF,追施组果枝台数范围在5.63~7.03,LD-ZM表现显著性差异,效果较佳。图6
蕾期时2种还田方式对棉花叶绿素含量差异不大,基施处理下LD-ZM达到显著性差异水平,其次为LD,追施组中LD-KC表现最好,在盛铃期,基施组6个处理间无显著性差异,叶绿素含量SPAD值为65.27~68.69,追施组叶绿素含量SPAD值在65.23~69.61,LD-HC 表现最佳,其次为LD处理的叶绿素含量较高。图7
2.2 虫砂复合生防菌2种施用方式对棉花黄萎病发生的影响
研究表明,基施与追施处理组下棉花黄萎病发生的病情指数,在4个调查日内均无显著性差异,在棉花黄萎病发生初期(第1次调查),基施组的病情指数在3.80~5.85,LD-JDF处理对棉花黄萎病的防效较高,达到44.36%,其次为LD-HC,防效为26.79%,LD-KC病情指数最高,防效最差,追施组病情指数在2.50~5.33,LD-HC处理下的病情指数最低,防效为63.40%,LD-KC表现较差,在棉花黄萎病发生的高峰期及后期(第3次、第4次调查),2种还田方式下的各处理间均未达到显著性差异水平,在第4次病情指数调查中,基施组病情指数在27.00~31.67,以LD-JDF表现最好,病情指数最低,防效为19%,其次为LD-HC处理,防效为12.5%,追施组病情指数在21.67~30.83,LD-JDF防效最高,达到34.98%,其次为LD-HC和LD-ZM,防效均为24.99%,基施组与追施组相比,追施对黄萎病的防治效果优于基施。表1,图8
2.3 虫砂复合生防菌2种施用方式对棉花产量的影响
研究表明,相同施用量下,2种还田方式对棉花出苗率未达到显著性差异,基施处理中LD-ZM和LD-JDF的出苗率相对较高,分别为83.33%±4.17%、83.33%±4.81%,在追施组中,LD-KC出苗率最高,为86.11%±6.05%,相较于基施组的出苗率,追施组整体偏低。
在单株铃数上,LD-ZM在2组中达到显著性差异水平,基施组单株铃数在4.7~5.37,LD-HC表现较差,追施组单株铃数在5.07~6.57。
基施与追施组均达到增产效果,基施组LD-JDF表现最佳,增产率达9.84%,追施组LD-JDF增产率最高,达到33.40%,其次为LD-HC,增产率为31.10%,追施产量明显高于基施组。表2
3 讨 论
3.1 虫砂复合生防菌2种施用方式对棉花生长发育的影响
试验以虫砂复合生防菌全量基施和虫砂基施+生防菌追施2种还田方式,探究对棉花生长发育的影响。研究结果表明,基施组LD-KC和LD对棉花的生长发育表现较好,追施组以LD-JDF和LD-ZM表现较好,李俊等[22]研究表明,枯草芽孢杆菌对棉花的促生作用效果明显,对株高、茎粗、叶绿素含量均有一定的促进作用,对棉花无不良影响,与试验研究结果一致。
史长旭等[23]研究表明,适当比例的虫砂会对辣椒和黄瓜的生长有促进作用,由此看出,虫砂本身具有促进作物生长的作用,有文献研究[24]指出可以通过改进生防菌的使用方法来提升生防菌的拮抗效果,试验研究结果表明,采用虫砂基施+生防菌追施施用方式对棉花生长发育促进效果优于基施处理,可能与虫砂为生防菌提供营养物质有关,因此虫砂可作为营养载体与生防菌复配施用。
3.2 虫砂复合生防菌2种施用方式对棉花黄萎病防效的影响
田间防效结果表明,相同施用量下,2种还田方式的各处理间均未达到显著性差异水平,基施组病情指数范围在27.00~31.67,以LD-JDF表现最好,病情指数最低,防效为19%,追施组病情指数范围在21.67~30.83,LD-JDF防效最高,达到34.98%,生防菌在土壤中的生防效果由其定殖、增殖能力决定,陈英化等[25]研究结果与试验结果一致,解淀粉芽孢杆菌可以防治土壤中的黄萎病菌,研究中未开展生防菌定殖能力检测,下一步还需进行生防菌在土壤中虫砂上的定殖、增殖能力测定,刘海洋等[17]研究中提到生防菌在20~40 cm土层中的定殖量较低的问题,也需进行施用深度的优化。
追施组LD-HC也表现较好防效,且高于基施组LD-HC处理,匡志豪等[26]研究表明,哈茨木霉以浸种、灌根和叶面喷施3种施用方式处理烟株,灌根处理能有效提高烟株生长质量,降低烟草黑胫病发生,在试验设置2种施用方式中,黄萎病发生初期,部分基施处理防效高于追施处理,到后期,追施组防效优于基施处理,可能与虫砂复合生防菌基施后,短时间内建立起的微生物群落对黄萎病有短暂防治效果有关,而在虫砂基施+生防菌追施的方式下,生防菌作用时间更长,效果更显著,因此对于虫砂复合生防菌对黄萎病的作用机理还可进行深入研究。
3.3 虫砂复合生防菌2种施用方式对棉花产量的影响
基施组6个处理均有增产,增产率在2.66%~8.56%,其中LD-JDF增产率达到8.56%,追施组增产率在24.37%~33.40%,LD-JDF在组内增产率最高,达到33.40%,追施组增产效果显著高于基施组和对照,而LD处理下产量略高于基施组,可能与虫砂富含的氮磷钾和有机质对棉花增产产生促进作用有关,但CK(空白对照)产量相对偏低,可能与整体未施肥有关。
4 结 论
4.1
在棉花整个生育期内,虫砂基施+生防菌追施能有效促进棉花的生长发育,且追施组各处理防效均高于基施组,在棉花黄萎病发生初期,基施处理对棉花黄萎病的防效较高,LD-JDF处理达到44.36%,追施组LD-HC处理下的病情指数最低,防效均为63.40%,黄萎病发生后期,基施组和追施组均为JDF防效最高,分别达到19.00%、34.98%。追施组增产效果也较为显著,LD-JDF处理增产效果最好,增产率达到33.40%,其次为LD-HC,增产率为31.30%,追施组增产效果显著高于基施处理组和对照。
4.2 虫砂基施和生防菌追施的施用方式能促进棉花的生长发育和产量,且对棉花黄萎病有较好的防治效果。
参考文献(References)
[1]Wei F, Fan R, Dong H T, et al. Threshold microsclerotial inoculum for cotton Verticillium wilt determined through wet-sieving and real-time quantitative PCR[J]. Phytopathology, 2015, 105(2): 220-229.
[2] 蔡利华, 练文明, 邰红忠, 等. 新疆地区棉花生育期揭膜与否对黄萎病发生的影响[J]. 棉花科学, 2021, 43(4): 58-62, 72.
CAI Lihua, LIAN Wenming, TAI Hongzhong, et al. Effect of film-uncovering or not during cotton growth period on the Verticillium wilt in Xinjiang[J]. Cotton Sciences, 2021, 43(4): 58-62, 72.
[3] 王珏. 棉花黄萎病发病成因与预防治理策略的经济效益[J]. 中国纤检, 2022,(7): 47-50.
WANG Jue. Occurrence characteristics and control strategies of cotton blight and Verticillium wilt in northern Xinjiang[J]. China Fiber Inspection, 2022,(7): 47-50.
[4] 蒲丹丹, 张亚林, 白红燕, 等. 内生真菌简青霉CEF-818对棉花黄萎病的防治效果及机理[J]. 棉花学报, 2022, 34(4): 313-324.
PU Dandan, ZHANG Yalin, BAI Hongyan, et al. Control effect and mechanism of endophytic fungus Penicillium simplicissimum CEF-818 on cotton Verticillium wilt[J]. Cotton Science, 2022, 34(4): 313-324.
[5] 白红燕. 枯草芽孢杆菌EBS03防治棉花黄萎病效果评测及培养条件优化[D]. 乌鲁木齐: 新疆农业大学, 2022.
BAI Hongyan. Evaluation on the effect of Bacillus subtilis EBS03 in controlling cotton Verticillium wilt and optimization of culture conditions[D]. Urumqi: Xinjiang Agricultural University, 2022.
[6] 白红燕, 冯自力, 冯鸿杰, 等. 48株枯草芽孢杆菌对棉花黄萎病防治效果评测[J]. 中国棉花, 2021, 48(12): 13-19.
BAI Hongyan, FENG Zili, FENG Hongjie, et al. Evaluation of the control effect of 48 strains of Bacillus subtilis on cotton Verticillium wilt[J]. China Cotton, 2021, 48(12): 13-19.
[7] 刘璐. 对节白蜡内生细菌YZU-SG146对棉花黄萎病生防作用机制的研究[D]. 荆州: 长江大学, 2021.
LIU Lu. Study on the biological control mechanism of endophytic bacteria YZU-SG146 against cotton Verticillium wilt[D]. Jingzhou: Yangtze University, 2021.
[8] Zabihullah Sherzad, 杨娜, 张静, 等. 棉花内生解淀粉芽孢杆菌489-2-2对棉花黄萎病的防效研究[J]. 核农学报, 2021, 35(1): 41-48.
SHERZAD Z, YANG Na, ZHANG Jing, et al. Study on the control effect of endophytic Bacillus amyloliquefaciens 489-2-2 on Verticillium wilt of cotton[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(1): 41-48.
[9] 邱媛媛. 两株芽孢杆菌提高棉花黄萎病抗性与促生作用的机制的研究[D]. 南京: 南京农业大学, 2021.
QIU Yuanyuan. Study on the mechanism of two Bacillus strains improving cotton Verticillium wilt resistance and promoting growth[D]. Nanjing: Nanjing Agricultural University, 2021.
[10] Berg G, Fritze A, Roskot N, et al. Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb[J]. Journal of Applied Microbiology, 2001, 91(6): 963-971.
[11] Bubici G, Marsico A D, DAmico M, et al. Evaluation of Streptomyces spp. for the biological control of corky root of tomato and Verticillium wilt of eggplant[J]. Applied Soil Ecology, 2013, 72: 128-134.
[12] Han Q, Wu F L, Wang X N, et al. The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity[J]. Environmental Microbiology, 2015, 17(4): 1166-1188.
[13] Li Z F, Wang L F, Feng Z L, et al. Diversity of endophytic fungi from different Verticillium-wilt-resistant Gossypium hirsutum and evaluation of antifungal activity against Verticillium dahliae in vitro[J]. Journal of Microbiology and Biotechnology, 2014, 24(9): 1149-1161.
[14] 王静怡, 佐长赓, 牛新湘, 等. 生防菌在棉田土壤中定殖数量与防病作用相关性[J]. 新疆农业科学, 2023, 60(1): 178-184.
WANG Jingyi, ZUO Changgeng, NIU Xinxiang, et al. The quantity and activity of biocontrol bacteria in cotton field soil and the correlation of disease prevention[J]. Xinjiang Agricultural Sciences, 2023, 60(1): 178-184.
[15] 张国漪, 丁传雨, 任丽轩, 等. 菌根真菌和死谷芽孢杆菌生物有机肥对连作棉花黄萎病的协同抑制[J]. 南京农业大学学报, 2012, 35(6): 68-74.
ZHANG Guoyi, DING Chuanyu, REN Lixuan, et al. The synergetic inhibition effect of arbuscular mycorrhizal fungi cooperated Bacillus vallismortis organic fertilizer on cotton Verticillium wilt[J]. Journal of Nanjing Agricultural University, 2012, 35(6): 68-74.
[16] 朱荷琴, 李志芳, 冯自力, 等. 我国棉花黄萎病研究十年回顾及展望[J]. 棉花学报, 2017, 29(S1): 37-50.
ZHU Heqin, LI Zhifang, FENG Zili, et al. Overview of cotton Verticillium wilt research over the past decade in China and its prospect in future[J]. Cotton Science, 2017, 29(S1): 37-50.
[17] 刘海洋, 王伟, 张仁福, 等. 利用生防菌防治棉花黄萎病效果的制约因素[J]. 新疆农业科学, 2022, 59(1): 155-161.
LIU Haiyang, WANG Wei, ZHANG Renfu, et al. A brief analysis of the factors restricting the effectiveness of controlling cotton Verticillium wilt by using biocontrol bacteria in the field[J]. Xinjiang Agricultural Sciences, 2022, 59(1): 155-161.
[18] 张广杰. 虫菌复合技术转化棉秆还田对棉花生长发育及黄萎病发生的影响[D]. 乌鲁木齐: 新疆农业大学,2022.
ZHANG Guangjie. "Effect of insect-fungus compound technology on cotton growth and Verticillium wilt[D]. Urumqi: Xinjiang Agricultural University, 2022.
[19] 张广杰, 王倩, 刘玉升. 白星花金龟人为条件生物学与应用潜力[J]. 环境昆虫学报, 2020, 42(2): 257-266.
ZHANG Guangjie, WANG Qian, LIU Yusheng. Biology under artificial condition and utilization potential of Potosia brevitarsis (Coleoptera: Cetoniidea)[J]. Journal of Environmental Entomology, 2020, 42(2): 257-266.
[20] Zhang G J, Meng Z, Ge H, et al. Investigating Verticillium wilt occurrence in cotton and its risk management by the direct return of cotton plants infected with Verticillium dahliae to the field[J]. Frontiers in Plant Science, 2023, 14: 1220921.
[21] Zhang G J, Xu Y S, Zhang S, et al. Transformation capability optimization and product application potential of proteatia brevitarsis (Coleoptera: Cetoniidae) larvae on cotton stalks[J]. Insects, 2022, 13(12): 1083.
[22] 李俊, 徐艳琪, 刘肖肖. 枯草芽孢杆菌FXX-3对棉花的促生作用[J]. 农业开发与装备, 2017,(8): 100-101.
LI Jun, XU Yanqi, LIU Xiaoxiao. Effect of Bacillus subtilis FXX-3 on cotton growth promotion[J]. Agricultural Development amp; Equipments, 2017,(8): 100-101.
[23] 史长旭, 张广杰, 徐业山, 等. 白星花金龟虫粪砂混配基质对黄瓜和辣椒育苗效果的影响[J]. 新疆农业大学学报, 2021, 44(6): 443-447.
SHI Changxu, ZHANG Guangjie, XU Yeshan, et al. Effects of Protaetia brevitarsis lewis larvae dung-sand mixture matrix on cucumber and pepper seedling[J]. Journal of Xinjiang Agricultural University, 2021, 44(6): 443-447.
[24] 李红丽, 李清飞, 郭夏丽, 等. 调节土壤微生态防治烟草青枯病[J]. 河南农业科学, 2006, 35(2): 57-60.
LI Hongli, LI Qingfei, GUO Xiali, et al. A report of investigating and studying tobacco infectious diseases of 16 main tobacco producing provinces(regions)in China[J]. Journal of Henan Agricultural Sciences, 2006, 35(2): 57-60.
[25] 陈英化, 李爱霞, 冯丽娜, 等. 棉花黄萎病内生拮抗细菌L-4-2的鉴定及定殖[J]. 西北农业学报, 2012, 21(2): 68-71.
CHEN Yinghua, LI Aixia, FENG Lina, et al. Identification and colonization of an antagonistic endophytic bacterium L-4-2 against cotton Verticillium wilt[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(2): 68-71.
[26] 匡志豪, 王典, 云菲, 等. 哈茨木霉施用方式对烟草生长、黑胫病防治及诱导抗性的影响[J]. 山东农业科学, 2023, 55(2): 119-126.
KUANG Zhihao, WANG Dian, YUN Fei, et al. Effect of Trichoderma harzianum application method on tobacco growth, black shank control and inducing resistance[J]. Shandong Agricultural Sciences, 2023, 55(2): 119-126.
Effects of two application methods of insect-sand compound microbial agent on cotton growth and control of Verticillium wilt
MENG Zhuo1,2,3,TANG Xiaowen1,3,ZHANG Guangjie1,2,3,XU Andong2,YAN Yu1,3,FU Rao1,3,QIANG Song1,2,3,JIANG Pingan2,MA Deying1,2,3
(1." College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; 2. Cotton Engineering Research Center of Ministry of Education, College of Agriculture,Xinjiang Agricultural University, Urumqi 830052, China; 3. Key Laboratory of Monitoring and Safety Prevention and Control of Agricultural and Forest Pests/ College of Agriculture Xinjiang Agricultural University, Urumqi 830052, China)
Abstract:【Objective】 In order to explore the green control technology of cotton Verticillium wilt, the effects of two different application methods on cotton growth and control of verticillium wilt under the synergistic effect of Protaetia brevitarsis worm dung-sand and microbial agents will be clarified, in the hope of providing scheme reference for green control of the cotton disease and sustainable development of cotton industry.
【Methods】 Four treatments of larvae dung-sand combined with Bacillus subtilis (LD-KC), Bacillus amyloliquefaciens (LD-JDF), Trichoderma harzianum (LD-HC) and Zhongmian Junletu (LD-ZM) were set up, and total base fertilizer of the larvae dung-sand combined with microbial agents (TBF) and base fertilizer of larvae dung-sand+dressing microbial agents (BF+DBM) were used respectively.
【Results】 The growth and development indexes of cotton in BF+DBM group (plant height, stem diameter, first node of fruit branches, etc.) were better than those in TBF group, with LD-JDF and LD-ZM performing better. The yield increase of seed cotton in BF+DBM group was significantly higher than those in TBF group and control group (CK). The yield increase of seed cotton in BF+DBM group was 24.37%-33.40%. The highest yield increase was achieved in LD-JDF group (33.40%), followed by LD-HC (31.10%). In the early stage of Verticillium wilt, the disease index of TBF group was 3.80-5.85, the disease index of LD-JDF treatment was higher, reaching 44.36%, the disease index of BF+DBM group was 2.50-5.33, the disease index of LD-HC treatment was the lowest, and the prevention effect was 63.40%. In the late stage of Verticillium wilt, the disease indexes of TBF group and BF+DBM group were between 27.00-31.67 and 21.67-30.83, respectively, and JDF had the highest control effect, reaching 19.00% and 34.98% respectively.
【Conclusion】 "During the whole growth period of cotton, the basic application of larvae dung-sand combined with semi-quantitative biocontrol bacteria plus semi-quantitative biocontrol bacteria topdressing can effectively promote the growth and development of cotton, and has a good control effect on cotton Verticillium wilt, and the effect of increasing production is more obvious. LD-JDF has the best effect of increasing production, and base fertilizer of larvae dung-sand+dressing biocontrol microorganisms.
Key words:Verticillium dahliae; biological control; insect-microorganisms compound; application mode; prevent diseases and increase production
Fund projects:Key Scientific R amp; D Program Project of Xinjiang Uygur Autonomous Region (2022B02046);Project of College Students Innovation Training Program (dxscx2022010)
Correspondence author:MA Deying(1968-), female, from Urumqi, Xinjiang , professor,Ph.D.,master/doctorals supervisors,research direction: green control of pests research,(E-mail)mdynd@163.com
JIANG Pingan(1965-), male, from Lezhi,Sichuan,professor,Ph.D., master/doctorals supervisors,research direction:crop fertilization and agricultural digitalization technology, (E-mail)jiang863863@sina.com
基金项目:新疆维吾尔自治区重点研发计划项目(2022B02046);大学生创新训练计划项目(dxscx2022010)
作者简介:孟卓(1998-),女,新疆博乐人,硕士研究生,研究方向为棉花黄萎病绿色防控,(E-mail)1349641389@qq.com
通讯作者:马德英(1968-),女,新疆乌鲁木齐人,教授,博士,硕士生/博士生导师,研究方向为有害生物绿色防控,(E-mail)mdynd@163.com
蒋平安(1965-),男,四川乐至人,教授,博士,硕士生/博士生导师,研究方向为作物施肥及农业数字化技术,(E- mail)jiang863863@sina.com