有机无机肥配施对潮土麦田肥力和冬小麦产量的影响

known 发布于 2025-07-26 阅读(457)

doi:10.6048/j.issn.1001-4330.2024.05.004

摘" 要:【目的】研究不同施肥方式对黄淮海潮土区麦田肥力和冬小麦氮素利用效率和产量的影响,为该区域优化施肥措施、合理利用有机肥资源和保障作物高产提供理论支持和技术指导。

【方法】基于天津潮土区连续12年的施肥处理定位试验,设置施肥处理为对照(CK,不施肥)、单施有机肥(M)、化肥减量50%配施有机肥(MF1)、常量化肥配施有机肥(MF2)、单施化肥处理(F)。

【结果】与对照相比,施肥处理均能显著提高麦田土壤有机质和碱解氮、速效磷、速效钾含量,且有机无机肥配施处理提升土壤肥力效果最好。与对照相比,M、MF1、MF2和F处理土壤有机质增幅分别为92%、48%、78%和20%。MF1处理孕穗-成熟期叶片氮素含量显著降低,促进氮素向籽粒的转移,提高氮素利用效率,显著提高穗粒数和千粒重,进而起到增产作用。MF1、MF2处理冬小麦产量分别达到6 467和6 345 kg/hm2,较F处理提高12%和9%。

【结论】施用化肥115 kg/hm2、有机肥15 000 kg/hm2的配施模式能够较常规模式降低化肥投入15%,并保持冬小麦产量稳定,可作为黄淮海平原潮土区冬小麦农田的推荐施肥技术。

关键词:冬小麦;有机无机肥配施;产量;氮素利用率;土壤养分;干物质积累

中图分类号:S512""" 文献标志码:A""" 文章编号:1001-4330(2024)05-1067-10

收稿日期(Received):

2023-10-29

基金项目:

国家自然科学基金项目(32271651);中国农业科学院科技创新工程(农业农村部环境保护科研监测所)

作者简介:

张钊(1993-),男,河南新乡人,硕士研究生,研究方向为农田生态环境,(E-mail)zzbeilai2019@163.com

通讯作者:

汤秋香(1980-),女,河南开封人,教授,研究方向为农田生态环境,(E-mail)tangqiuxiang2004_2@163.com

张艳军(1981-),男,山西原平人,副研究员,研究方向为生物多样性与生态农业,(E-mail)zhangyanjun@caas.cn

0" 引 言

【研究意义】施用化肥对粮食作物产量贡献率为40%~55%[1-2]。但过量施用化肥将导致土壤氮素过剩[3-4],而且不利于进一步提高作物产量[5]。黄淮海平原区粮食播种面积和产量分别占全国的14.0%和12.4%[6]。黄淮海小麦主产区,尚存在土壤有机质缺乏等问题[7]。小麦优选不同有机无机肥料配合施用方式,对改善农田土壤理化性质、降低化肥施用量、提高土壤肥力和小麦产量有实际意义。【前人研究进展】郑福丽等[8]研究发现,增施有机肥能够改善土壤结构和培肥地力,促进籽粒氮素吸收和转运,从而提高小麦-玉米两熟作物产量。任宁等[9]研究表明,有机无机肥料配施可提高肥料利用效率,促进小麦-玉米轮作养分吸收,显著增加小麦-玉米产量。鲁伟丹等[10]研究表明,20%的有机无机肥施用比例是干旱区绿洲春小麦培肥地力及产量较为合理的施用方式。【本研究切入点】现有研究多集中在对土壤养分施肥方式[11,12]、作物产量变化[13,14]、氮素利用效率影响[15,16]等方面,但对潮土区冬小麦-夏玉米种植模式并连续12年的有机无机肥还田条件下,土壤养分状况对产量及其构成因子贡献率的报道仍较少。需要研究不同施肥方式对黄淮海潮土区麦田肥力和冬小麦氮素利用效率和产量的影响。【拟解决的关键问题】选择天津武清区典型潮土区冬小麦-夏玉米轮作种植田块连续12年定位试验的基础上,以黄淮海平原区主栽小麦品种中麦629为研究对象,设置不同施肥方式(对照、单施有机肥、化肥减量50%配施有机肥、常规量化肥配施有机肥、单施化肥)5个处理,测定麦田土壤养分、小麦干物质积累量、产量等指标,通过逐步回归方法计算贡献率,评价不同施肥方式下耕层土壤化学性质对冬小麦产量的贡献率,为有机化肥配合施用提供数据支撑。

1" 材料与方法

1.1" 材 料

试验于2010年6月在中国农业科学院武清野外试验站(39°21′N,117°12′E)进行。该地区属暖温带半湿润大陆性气候,年平均气温12℃,年均降水量600 mm,无霜期212 d。土壤类型为潮土,土壤有机质18.72 g/kg,全氮1.18 g/kg,全磷0.72 g/kg,硝态氮、铵态氮、速效磷和速效钾分别为19.95、5.06、18.60和50.67 mg/kg,pH值为7.58。耕作方式为冬小麦-夏玉米轮作,已连续轮作种植12年,作物收获后秸秆全部还田。

1.2" 方 法

1.2.1" 试验设计

采用随机区组设计,设置对照(CK,不施肥)、单施有机肥M(有机肥15 t/hm2)、化肥减量50%配施有机肥MF1(有机肥 15 t/hm2;N:基肥69.0 kg/hm2、追肥46.0 kg/hm2)、常规量化肥配施有机肥MF2(有机肥 15 t/hm2;N:基肥134.6 kg/hm2、追肥89.7 kg/hm2)、单施化肥F(N:基肥134.6 kg/hm2、追肥89.7 kg/hm2),所有处理磷肥、钾肥均为P2O5 72.0 kg/hm2,K2O 52.5 kg/hm2。每个处理5次重复,小区面积为50 m2,各小区间隔1 m。有机肥由牛粪和鸡粪混合堆腐而成(N 1.17%,P 0.87%,K 0.45%);化学氮肥为尿素(N 46.4%),磷肥为过磷酸钙(P2O5 12%),钾肥为硫酸钾(K2O 50%);有机肥和磷肥钾肥做基肥,氮肥60%作基肥于2020年10月初小麦定植时施入,40%在2021年3月下旬冬小麦返青后追肥施入,2021年6月19日收获。

1.2.2" 测定指标

1.2.2.1" 土壤养分

用5 cm直径土钻在小区内采用“S”形五点取样法。分别取0~20 cm耕层土壤,各处理小区取样量不少于2 kg。除去杂草、砂粒和植物残体等杂物,自然风干后研磨过10目筛(筛孔d=2 mm),用于测定土壤碱解氮、pH值、速效磷和速效钾。过100目筛(筛孔d=0.15 mm)测定土壤有机质和全氮含量。土壤pH值采用酸度计测定(NY/T-1121.2-2006),土壤速效磷采用碳酸氢钠浸提钼锑抗比色法测定(NY/T1121.7-2014),土壤速效钾采用四苯硼钠比浊法测定(NY/T1848-2010),土壤碱解氮采用扩散法测定(LY/T1229-1999),土壤有机质采用水合热重铬酸钾氧化比色法测定,操作步骤按《土壤农业化学分析方法》[17]。土壤硝态氮、铵态氮和土壤全氮含量由AA3型流动分析仪(Bram+Luebbe Crop,German)测定[18-19]。

1.2.2.2" 冬小麦植株干物质积累量

2021年分别于小麦拔节期(4月15日)、孕穗期(4月28日)、开花期(5月20日)和成熟期(6月19日),采集具有代表性的植株20株,其中拔节期采集叶、茎、鞘;孕穗期和开花期采集叶、茎、鞘、穗;成熟期采集叶、茎、鞘、壳、籽粒,分别装袋带回。各部分样品用烘箱105℃杀青1 h,80℃烘干至恒重,称量并记录样品干重,地上生物量干重即为冬小麦干物质积累量[20]。烘干样品采用高速万能粉碎机(天津市泰斯特仪器有限公司)粉碎,过100目筛后用塑封袋保存,冬小麦植株各部位全氮含量由AA3型连续流动分析仪(Bram+Luebbe Crop,German)测定[18]。

1.2.2.3" 产量及其构成因子

冬小麦成熟期各小区随机取20穗测定每穗粒数、千粒重等产量构成因子。各小区取4 m2长势均匀的区域,人工收割、脱粒,籽粒自然风干后称重,采用高温烘干法(GB/T3543.6-1995)测定籽粒含水量[19],并折算为含水量13%的标准计算实收产量。

1.2.2.4" 氮素利用率

地上部干物质积累量(Dry matter accumulation, DMA)=成熟期单株总干重×成熟期实收株数[20];

氮素收获指数(N harvest index, NHI)=籽粒吸氮量/植株总吸氮量[21];

植株总氮素积累量(Total nitrogen accumulationamount in plant, TNAA)=成熟期单株干重×成熟期植株含氮量[20];

植株氮素吸收效率(Nitrogen uptake efficiency, NUP)=施氮区地上部氮吸收量/施氮量×100%[22];

氮肥农学利用率(nitrogen agronom ic efficiency, NAE)=(施氮区籽粒产量-不施氮区籽粒产量)/施氮量[23];

氮肥利用率(nitrogen utilization efficiency, NUE)=(施氮区氮素吸收量-不施氮区氮素吸收量)/施氮量×100%[24];

氮肥偏生产力(nitrogen partial factor productivity, NPFP)=施氮区产量/施氮量[20]。

1.3" 数据处理

所有数据采用Microsoft Excel 2019整理和计算,采用Origin 2018软件进行绘图,运用SPSS 25.0统计分析软件进行各处理土壤理化性质、产量等单因素方差分析(One-way ANOVA),采用Duncan方法检验处理间的差异显著性。运用SPSS 25.0对耕层土壤理化因子对小麦产量及构成因子的影响进行逐步回归分析,计算不同因子标准化系数绝对值与所有因子标准化系数绝对值之和的比值,进行数据标准化,评价不同处理土壤理化因子对小麦产量的贡献度[25]。

2" 结果与分析

2.1" 有机无机肥配施对麦田土壤养分的影响

研究表明,有机无机肥配施(MF1、MF2)显著提高冬小麦不同生育期土壤养分含量,但降低拔节至成熟期的土壤pH值。与单施化肥处理(F)相比,化肥减量50%配施有机肥(MF1)处理土壤碱解氮、速效磷、速效钾含量增幅分别为41%~42%、139%~174%和11%~22%;常规量化肥配施有机肥(MF2)处理土壤碱解氮、速效磷、速效钾含量增幅分别为43%~166%、124%~209%和11%~44%,碱解氮、速效磷、速效钾增加显著(Plt;0.05)。此外,与对照和单施化肥处理相比,有机肥施用处理(M, MF1, MF2)显著提高土壤有机质和全氮含量,但有机肥施用的各处理之间土壤有机质含量差异不显著。与对照相比,施肥显著降低土壤pH值,且随小麦生育期的推进,土壤pH值呈下降趋势,在成熟期,单施化肥土壤pH值降至(8.02±0.07),显著低于CK。有机无机配施可显著提高土壤有机质含量和速效养分水平。表1

2.2" 有机无机肥配施对冬小麦干物质积累影响

研究表明,有机肥处理(M)、氮肥处理(F)、有机无机配施处理(MF1、MF2)的小麦全株干物质积累逐渐增加,并在成熟期达到高峰。施肥处理可以提高不同生育时期总干物质积累量。与F处理相比,MF2处理开花期的总干物质积累量显著提高了13%,MF1处理的各个时期总干物质积累量无显著差异。与M处理相比,MF1处理拔节期、孕穗期和成熟期的总干物质积累量分别显著提高了111%、16%和33%,MF2处理孕穗期和开花期的总干物质积累量分别显著提高了10%和19%。与MF2处理相比,MF1处理拔节期的总干物质积累量显著提高了115%。图1

各处理拔节期干物质主要分配在叶片中,其中,MF1和F处理叶片干物质积累量最高,分别为2 166和2 028 kg/hm2,显著高于CK、M和MF2处理。各处理孕穗期干物质向茎鞘和穗部转移,其中,M、MF1和F处理茎鞘干物质积累量最高,分别为6 385、6 713和6 690 kg/hm2,显著高于CK和M处理。在开花期,各处理干物质主要分配在茎鞘和穗部,其中,MF1、MF2和F处理穗干物质积累量最高,分别为7 892、8 613、和8 025 kg/hm2,显著高于CK和M处理。在成熟期,各处理干物质均主要分配在籽粒中,其中,MF1、MF2和F处理籽粒干物质积累量最高,分别为15 619、13 993和14 886 kg/hm2,显著高于对照和单施有机肥处理。图2

2.3" 有机无机肥配施对冬小麦植株氮素利用效率的影响

研究表明,M和MF1处理可以显著提高氮素利用效率,施肥处理的氮素收获指数均显著高于对照处理。M处理的氮素吸收率、氮肥农学利用率、氮肥利用效率和氮肥偏生产力均显著高于其他3个施肥处理。与F处理相比,MF1处理植株的氮肥农学利用率和氮肥偏生产力分别提高了35%和28%。与MF2处理相比,MF1处理植株的氮素吸收率、氮肥农学利用率、氮肥利用效率和氮肥偏生产力分别提高了65%、60%、67%和59%,随化学氮肥施用比例的降低,冬小麦的氮素吸收率、氮肥农学利用率、氮肥利用效率和氮肥偏生产力均显著提高 (Plt;0.05)。表2

2.4" 有机无机肥配施对冬小麦产量的影响

研究表明,与对照相比,施肥处理(M、MF1、MF2、F)成穗数显著降低,降幅在15%~51%(Plt;0.05),但M、MF1、MF2和F处理的穗粒数和千粒重显著增加161%~259%和20%~32%(P<0.05)。施肥处理小麦产量显著增加,其中MF1和MF2产量最高,分别达到(6 467.69±115.08)和(6 345.06±224.13) kg/hm2,较单施化肥处理增产12%和9%(Plt;0.05),配施有机肥可提高小麦穗粒数和千粒重,进而提高其籽粒经济产量。相对于常规量化肥配施有机肥处理(MF2),化肥减量50%配施有机肥(MF1)并未显著降低穗粒数和籽粒产量,甚至成穗数和千粒重略高于常规处理,在有机肥施入下,化肥减施50%仍能满足小麦的养分需求,保持其经济产量稳定。表3

2.5" 土壤化学性质对冬小麦产量的贡献度

研究表明,拔节期耕层土壤碱解氮和速效磷对小麦产量的贡献度gt;30%,其次是速效钾和全氮含量均gt;9%,pH值贡献度为5%。在开花期,耕层土壤速效钾和全氮含量对小麦产量的贡献度gt;25%,其次是pH值贡献度为20%,其他指标的贡献度均lt;20%,碱解氮含量贡献度最小。在成熟期,耕层土壤速效磷和全氮含量对小麦产量的贡献度gt;20%,其次是pH值贡献度为19%,其他指标的贡献度均lt;19%。表4

3" 讨 论

3.1" 有机无机肥配施对土壤肥力的影响

化肥在粮食增产中发挥了重要作用[26]。麻坤等[27]研究指出,基于边际报酬递减理论,亟需通过调整施肥方式,优化肥料投入碳氮比例,提高作物吸收利用效率。有机无机肥配合施用可提高土壤氮素转化效率,改良土壤的同时,促进植株的养分吸收[28]。

王艳丽等[24]研究表明,氮肥能促进有机肥的腐熟,而有机肥能减少氮肥与土壤的接触,降低氮肥被土壤固定的作用,进而提高土壤速效氮磷钾和有机质含量,在减少化肥施用的同时达到与常规化肥用量一样的效果。研究中,从小麦拔节期至成熟期,有机肥和化学氮肥复合施用显著提升了土壤中有机质、碱解氮、速效钾、速效磷和全氮的含量,效果明显优于单独施用氮肥处理,试验研究结果与前人报道一致[29-32]。

较单施化肥,有机肥的输入能够显著提升土壤有机质含量,主要是有机肥中含有大量的有机成分,且还田后,可在其周围形成微生物富集区,加速肥料有机组分向土壤的转化[33-35]。有机肥与化肥20%~50%比例的配合施用可显著增加土壤速效磷、碱解氮和速效钾的含量,一方面是有机无机组分的互作效应,使得土壤养分之间相互协调,碳氮比适宜[36,37];另一方面是有机肥为土壤微生物的生长提供有效碳源,促进微生物繁殖,增加微生物活性,将土壤难溶性养分转化为速效养分[38]。研究中,MF1和MF2麦田土壤C/N在3.96~6.98,适宜功能微生物的生长和活性维持[39],是保证土壤速效养分转化的重要因素[40]。此外,研究中有机肥与化肥减量配施显著降低麦田土壤pH值,在拔节至成熟期有机无机配施处理土壤酸化程度甚至高于单施化肥处理,与朱丽霞等[29]有机肥施用缓解土壤酸化的研究结果相反,但与慕平等[41]研究结果相似。

3.2" 有机无机肥配施对干物质积累及产量影响

有机无机肥配施能够促进地上部干物质积累量的增加[42],同时促进植株养分向籽粒中转移和分配,增加后期干物质积累量从而提高籽粒产量[43]。研究中,冬小麦在不同生长时期有机无机配施对干物质积累量具有显著影响,可提高花后期籽粒干物质量分配比例有机肥配施速效化学氮肥能加速有机肥的腐熟,提供小麦植株所必需的中量、微量元素,且有机肥具有长效作用,可满足小麦生育后期的养分需求[44]。

研究中,在小麦生殖生长阶段,50%氮肥配施有机肥能够显著促进营养物质向生殖器官转移。土壤碱解氮、全氮和速效磷是小麦产量的重要限制因素,与马常宝等[45]速效氮、速效磷含量是石灰性潮土区小麦等粮食作物产量的主要限制因子的结论一致。

方畅宇等[46]研究表明,有机无机配施通过增加有效穗数和穗粒数实现水稻产量提高。马臣等[47]研究表明,有机无机肥配施比单施化肥处理小麦产量提高13.9%,有效穗数增加了6.4%,而对小麦穗粒数和千粒重影响并不显著。研究中,有机无机配施处理的单位面积穗粒数和千粒重均显著高于对照,原因是有机无机肥配施既可保证土壤长期的氮素供应,又可保证作物短期内的营养需求,从而增加了穗粒数和千粒重,提高了小麦籽粒产量,与杨清龙等[48]报道一致。朱春波等[36]的研究也显示,施用有机肥可提高根际土壤酶活性,在维持小麦生长后期较高的根系生理活性,促进根际有机养分的转化,利于对氮磷等元素的吸收和利用[49],进而提高了产量。

4" 结 论

与单施化肥相比,化肥减量50%配施有机肥的施肥模式可显著提高小麦生育期内土壤养分含量,增加肥效的持久性,保证冬小麦生长后期的养分需求。该施肥模式提高了小麦氮素吸收利用效率,并促进了氮素向籽粒的转运,协调孕穗期至成熟期干物质向籽粒的分配,提高冬小麦穗粒数和千粒重,提高冬小麦的经济产量。化肥减量50%配施有机肥处理MF1(15 000 kg/hm2有机肥+115 kg/hm2化肥),可作为黄淮海平原潮土区冬小麦农田的推荐施肥技术。

参考文献(References)

[1]

Erisman J W, Sutton M A, Galloway J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1: 636-639.

[2] Malhi S, Grant C, Johnston A, et al. Nitrogen fertilization management for no-till cereal production in the Canadian Great Plains: a review[J]. Soil amp; Tillage Research," 2001, 60(3): 101-122.

[3] 徐昶, 苗文亮, 倪远之, 等. 长三角农田轮作系统氨排放特征、转化机制和减排潜力[J]. 环境科学, 2022, 43(2): 1108-1128.

XU Chang, MIAO Wenliang, NI Yuanzhi, et al. Emission characteristics, transformation mechanism, and reduction potential of ammonia emissions from a crop rotation system in Yangtze River Delta[J]. Environmental Science, 2022, 43(2): 1108-1128.

[4] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science," 2008, 320(5878): 889-892.

[5] 贾曼曼, 肖靖秀, 汤利, 等. 不同施氮量对小麦蚕豆间作作物产量及其光合特征的影响[J]. 云南农业大学学报(自然科学), 2017, 32(2): 350-357.

JIA Manman, XIAO Jingxiu, TANG Li, et al. Effects of nitrogen supply on yields and photosynthesis characteristics of crops in wheat and broad bean intercropping[J]. Journal of Yunnan Agricultural University (Natural Science), 2017, 32(2): 350-357.

[6] 崔吉晓, 檀海斌, 吴佳迪, 等. 微喷灌水肥一体化对河北夏玉米生长及产量的影响[J]. 玉米科学, 2017, 25(3): 105-110.

CUI Jixiao, TAN Haibin, WU Jiadi, et al. Effects of fertigation on maize growth and yield through micro-sprinkling irrigation in Hebei Province[J]. Journal of Maize Sciences, 2017, 25(3): 105-110.

[7] 李颖慧, 姜小三. 黄淮海平原农区农用地土壤肥力评价及时空变化特征—以山东省博兴县为例[J]. 农业资源与环境学报, 2022, 39(3): 602-612.

LI Yinghui, JIANG Xiaosan. Spatiotemporal characteristics of soil nutrients and fertility evaluation of agricultural land in the HuangHuai-Hai Plain agricultural area: a case study of Boxing County, Shandong Province[J]. Journal of Agricultural Resources and Environment, 2022, 39(3): 602-612.

[8] 郑福丽, 刘苹, 李国生, 等. 有机-无机肥协同调控小麦-玉米两熟作物产量及土壤培肥效应[J]. 中国农业科学, 2020, 53(21): 4355-4364.

ZHENG Fuli, LIU Ping, LI Guosheng, et al. Organic-inorganic coordinated regulation to wheat-maize double crop yield and soil fertility[J]. Scientia Agricultura Sinica, 2020, 53(21): 4355-4364.

[9] 任宁, 黄玉芳, 侯占领, 等. 有机和无机肥配施对豫中小麦-玉米轮作体系产量及效益的影响[J]. 河南农业大学学报, 2019, 53(5): 683-688.

REN Ning, HUANG Yufang, HOU Zhanling, et al. Effects and efficiency of organic and inorganic fertilizer applications on yields of crops in wheat-maize rotation system in central Henan[J]. Journal of Henan Agricultural University, 2019, 53(5): 683-688.

[10] 鲁伟丹, 李俊华, 陈丽丽, 等. 有机肥替代20%化肥处理对滴灌春小麦产量及土壤养分的影响[J]. 新疆农业科学, 2021, 58(5): 814-821.

LU Weidan, LI Junhua, CHEN Lili, et al. Effects of replacing organic fertilizer with organic fertilizer on yield of spring wheat and soil nutrients under drip irrigation[J]. Xinjiang Agricultural Sciences, 2021, 58(5): 814-821.

[11] Li Z P, Liu M, Wu X C, et al. Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China[J]. Soil and Tillage Research, 2010, 106(2): 268-274.

[12] Wu M N, Qin H L, Chen Z, et al. Effect of long-term fertilization on bacterial composition in rice paddy soil[J]. Biology and Fertility of Soils, 2011, 47(4): 397-405.

[13] Yadav R L, Dwivedi B S, Prasad K, et al. Yield trends, and changes in soil organic-C and available NPK in a long-term rice–wheat system under integrated use of manures and fertilisers[J]. Field Crops Research, 2000, 68(3): 219-246.

[14] Manna M C, Swarup A, Wanjari R H, et al. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India[J]. Field Crops Research, 2005, 93(2/3): 264-280.

[15] 杨清龙, 刘鹏, 董树亭, 等. 有机无机肥配施对夏玉米氮素气态损失及籽粒产量的影响[J]. 中国农业科学, 2018, 51(13): 2476-2488.

YANG Qinglong, LIU Peng, DONG Shuting, et al. Effects of combined application of manure and chemical fertilizers on loss of gaseous nitrogen and yield of summer maize[J]. Scientia Agricultura Sinica, 2018, 51(13): 2476-2488.

[16] 谢军, 赵亚南, 陈轩敬, 等. 有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率[J]. 中国农业科学, 2016, 49(20): 3934-3943.

XIE Jun, ZHAO Yanan, CHEN Xuanjing, et al. Nitrogen of organic manure replacing chemical nitrogenous fertilizer improve maize yield and nitrogen uptake and utilization efficiency[J]. Scientia Agricultura Sinica, 2016, 49(20): 3934-3943.

[17]鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999: 109-110.

LU Rukun. Chemical analysis methods of soil agriculture[M]. Beijing: China Agricultural Science and Technology Press, 1999: 109-110.

[18] 张英利, 许安民, 尚浩博, 等. AA3型连续流动分析仪测定土壤和植物全氮的方法研究[J]. 西北农林科技大学学报(自然科学版), 2006, 34(10): 128-132.

ZHANG Yingli, XU Anmin, SHANG Haobo, et al. Determination study of total nitrogen in soil and plant by continuous flow analytical system[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 2006, 34(10): 128-132.

[19] 中国国家标准化管理委员会.中国国家标准(2008年版)馆藏目录(一)[J]. 世界标准信息, 2008,(4): 80-128.

Standardization Administration of the Peoples Republic of China. Catalogue of Chinese national standards (2008 edition) (一)[J]. World Standards News," 2008,(4): 80-128.

[20] 曹胜彪, 张吉旺, 杨今胜, 等. 密度对高产夏玉米产量和氮素利用效率的影响[J]. 玉米科学, 2012, 20(5): 106-110, 120.

CAO Shengbiao, ZHANG Jiwang, YANG Jinsheng, et al. Effects of plant density on grain yield and nitrogen use efficiency of the summer maize with high yield[J]. Journal of Maize Sciences, 2012, 20(5): 106-110, 120.

[21] 张军, 张洪程, 段祥茂, 等. 地力与施氮量对超级稻产量、品质及氮素利用率的影响[J]. 作物学报, 2011, 37(11): 2020-2029.

ZHANG Jun, ZHANG Hongcheng, DUAN Xiangmao, et al. Effects of soil fertility and nitrogen application rates on super rice yield, quality, and nitrogen use efficiency[J]. Acta Agronomica Sinica, 2011, 37(11): 2020-2029.

[22] 王站付, 施俭, 陆亮, 等. 有机无机肥配施对小麦产量及氮肥利用效率的影响[J]. 上海交通大学学报(农业科学版), 2019, 37(6): 94-101.

WANG Zhanfu, SHI Jian, LU Liang, et al. Influence of organic-synthetic combined fertilizers on yield and nitrogen use efficiency in wheat[J]. Journal of Shanghai Jiao Tong University (Agricultural Science) , 2019, 37(6): 94-101.

[23] 刘立军, 桑大志, 刘翠莲, 等. 实时实地氮肥管理对水稻产量和氮素利用率的影响[J]. 中国农业科学, 2003, 36(12): 1456-1461.

LIU Lijun, SANG Dazhi, LIU Cuilian, et al. Effects of real-time and site-specific nitrogen managements on rice yield and nitrogen use efficiency[J]. Scientia Agricultura Sinica, 2003, 36(12): 1456-1461.

[24] 王艳丽, 吴鹏年, 李培富, 等. 有机肥配施氮肥对滴灌春玉米产量及土壤肥力状况的影响[J]. 作物学报, 2019, 45(8): 1230-1237.

WANG Yanli, WU Pengnian, LI Peifu, et al. Effects of organic manure combined with nitrogen fertilizer on spring maize yield and soil fertility under drip irrigation[J]. Acta Agronomica Sinica, 2019, 45(8): 1230-1237.

[25] 崔月峰, 孙国才, 郭奥楠, 等. 秸秆和生物炭还田对冷凉稻区土壤物理性质及pH值的影响[J]. 江苏农业科学, 2020, 48(21): 255-260.

CUI Yuefeng, SUN Guocai, GUO Aonan, et al. Effects of straw and biochar on soil physical properties and pH value in cold waterlogged paddy soils[J]. Jiangsu Agricultural Sciences, 2020, 48(21): 255-260.

[26] 王鹏程, 邵泽强, 薛大伟. 明确化肥施用现状 提高肥料使用效率[J]. 吉林农业, 2015, (24): 85.

WANG Pengcheng, SHAO Zeqiang, XUE Dawei. Clarify the present situation of fertilizer application and improve the efficiency of fertilizer use[J]. Agriculture of Jilin, 2015, (24): 85.

[27] 麻坤, 刁钢. 化肥对中国粮食产量变化贡献率的研究[J]. 植物营养与肥料学报, 2018, 24(4): 1113-1120.

MA Kun, DIAO Gang. Research on the contribution rate of fertilizer to grain yield in China[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 1113-1120.

[28] 李春喜, 张令令, 马守臣, 等. 有机物料还田对麦田土壤碳氮含量、小麦产量及经济效益的影响[J]. 作物杂志, 2017(2): 145-150.

LI Chunxi, ZHANG Lingling, MA Shouchen, et al. Effects of organic materials returning on soil carbon and nitrogen contents, yield and economic benefit in wheat[J]. Crops, 2017(2): 145-150.

[29] 朱丽霞, 曹萌萌, 桑成琛, 等. 生物有机肥替代化肥对玉米土壤肥力及酶活性的影响[J]. 四川农业大学学报, 2022, 40(1): 67-72.

ZHU Lixia, CAO Mengmeng, SANG Chengchen, et al. Effects of bio-fertilizer partially substituting chemical fertilizer on soil fertility and enzyme activity in maize field[J]. Journal of Sichuan Agricultural University," 2022, 40(1): 67-72.

[30] 陈智坤, 郝雅珺, 任英英, 等. 长期定位施肥对两种小麦耕作系统土壤肥力的影响[J]. 土壤, 2021, 53(1): 105-111.

CHEN Zhikun, HAO Yajun, REN Yingying, et al. Effects of long-term fertilization on soil fertility under different wheat cultivation systems[J]. Soils, 2021, 53(1): 105-111.

[31] 郑信建. 有机无机肥配施对水稻产量及土壤肥力的影响[J]. 安徽农学通报, 2017, 23(17): 57-59.

ZHENG Xinjian. Effects of combined application of organic and inorganic fertilizers on rice yield and soil fertility[J]. Anhui Agricultural Science Bulletin, 2017, 23(17): 57-59.

[32] 李圆宾, 李鹏, 王舒华, 等. 稻麦轮作体系下有机肥施用对作物产量和土壤性质影响的整合分析[J]. 应用生态学报, 2021, 32(9): 3231-3239.

LI Yuanbin, LI Peng, WANG Shuhua, et al. Effects of organic fertilizer application on crop yield and soil properties in rice-wheat rotation system: a meta-analysis[J]. Chinese Journal of Applied Ecology, 2021, 32(9): 3231-3239.

[33] Masto R E, Chhonkar P K, Singh D, et al. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol[J]. Soil Biology and Biochemistry, 2006, 38(7): 1577-1582.

[34] Heitkamp F, Wendland M, Offenberger K, et al. Implications of input estimation, residue quality and carbon saturation on the predictive power of the Rothamsted Carbon Model[J]. Geoderma, 2012, 170: 168-175.

[35] 张雅洁, 陈晨, 陈曦, 等. 小麦-水稻秸秆还田对土壤有机质组成及不同形态氮含量的影响[J]. 农业环境科学学报, 2015, 34(11): 2155-2161.

ZHANG Yajie, CHEN Chen, CHEN Xi, et al. Effects of wheat and rice straw returning on soil organic matter composition and content of different nitrogen forms in soil[J]. Journal of Agro-Environment Science," 2015, 34(11): 2155-2161.

[36] 朱春波, 邓丽, 左成凤. 有机无机肥配施对烤烟根际土壤养分含量的影响[J]. 贵州农业科学, 2020, 48(1): 13-18.

ZHU Chunbo, DENG Li, ZUO Chengfeng. Effect of organic and inorganic fertilizers combined application on nutrition content of rhizosphere soil in tobacco[J]. Guizhou Agricultural Sciences, 2020, 48(1): 13-18.

[37] 陈鸽, 汤春纯, 李祖胜, 等. 不同施肥措施对洞庭湖区旱地肥力及作物产量的影响[J]. 中国生态农业学报, 2017, 25(5): 689-697.

CHEN Ge, TANG Chunchun, LI Zusheng, et al. Influence of different fertilization modes on soil fertility and crop yield in Dongting Lake upland areas[J]. Chinese Journal of Eco-Agriculture," 2017, 25(5): 689-697.

[38] 黄容, 高明, 万毅林, 等. 秸秆还田与化肥减量配施对稻-菜轮作下土壤养分及酶活性的影响[J]. 环境科学, 2016, 37(11): 4446-4456.

HUANG Rong, GAO Ming, WAN Yilin, et al. Effects of straw in combination with reducing fertilization rate on soil nutrients and enzyme activity in the paddy-vegetable rotation soils[J]. Environmental Science, 2016, 37(11): 4446-4456.

[39] 肖胜生. 温带半干旱草地生态系统碳固定及土壤有机碳库对外源氮输入的响应[D]. 北京: 中国科学院地理科学与资源研究所, 2010: 82-83

XIAO Shengsheng. Response of exogenous nitrogen input in temperate semi-arid grassland ecosystems and soil organic carbon pool[D]. Beijing: Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 2010: 82-83

[40] 周维杰, 李钟淏, 李婷玉, 等. 协同作物提质增效和土壤地力提升的最佳氮素有机替代比例探索——以攀枝花芒果为例[J]. 热带作物学报, 2022, 43(5): 1032-1044.

ZHOU Weijie, LI Zhonghao, LI Tingyu, et al. Optimal nitrogen organic replacement ratio for synergistic crop quality and efficiency enhancement and soil fertility EnhancementTaking Panzhihua mango as an example[J]. Chinese Journal of Tropical Crops, 2022, 43(5): 1032-1044.

[41] 慕平, 张恩和, 王汉宁, 等. 连续多年秸秆还田对玉米耕层土壤理化性状及微生物量的影响[J]. 水土保持学报, 2011, 25(5): 81-85.

MU Ping, ZHANG Enhe, WANG Hanning, et al. Effects of continuous returning straw to maize tilth soil on chemical character and microbial biomass[J]. Journal of Soil and Water Conservation," 2011, 25(5): 81-85.

[42] 胡岚, 梁波, 陈云峰, 等. 长期施用不同肥料对橘园土壤生物群落结构的影响[J]. 农业资源与环境学报, 2022, 39(1): 80-87.

HU Lan, LIANG Bo, CHEN Yunfeng, et al. Effects of long-term application of different fertilizers on soil biota community composition in citrus orchards[J]. Journal of Agricultural Resources and Environment, 2022, 39(1): 80-87.

[43] 王宁, 冯克云, 南宏宇, 等. 不同水分条件下有机无机肥配施对棉花根系特征及产量的影响[J]. 中国农业科学, 2022, 55(11): 2187-2201.

WANG Ning, FENG Keyun, NAN Hongyu, et al. Effects of combined application of organic fertilizer and chemical fertilizer on root characteristics and yield of cotton under different water conditions[J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.

[44] 秦建权, 冯跃华, 叶勇, 等. 有机无机肥配施对杂交水稻干物质生产、养分吸收及产量形成的影响[J]. 中国稻米, 2017, 23(3): 59-62.

QIN Jianquan, FENG Yuehua, YE Yong, et al. Effects of combined inorganic-organic fertilizer on dry matter production, nutrient absorption and yield formation in hybrid rice[J]. China Rice, 2017, 23(3): 59-62.

[45] 马常宝, 卢昌艾, 任意, 等. 土壤地力和长期施肥对潮土区小麦和玉米产量演变趋势的影响[J]. 植物营养与肥料学报, 2012, 18(4): 796-802.

MA Changbao, LU Changai, REN Yi, et al. Effect of soil fertility and long-term fertilizer application on the yields of wheat and maize in fluvo-aquic soil[J]. Plant Nutrition and Fertilizer Science, 2012, 18(4): 796-802.

[46] 方畅宇, 屠乃美, 张清壮, 等. 不同施肥模式对稻田土壤速效养分含量及水稻产量的影响[J]. 土壤, 2018, 50(3): 462-468.

FANG Changyu, TU Naimei, ZHANG Qingzhuang, et al. Effects of fertilization modes on available nutrient contents of reddish paddy soils and rice yields[J]. Soils," 2018, 50(3): 462-468.

[47] 马臣, 刘艳妮, 梁路, 等. 有机无机肥配施对旱地冬小麦产量和硝态氮残留淋失的影响[J]. 应用生态学报, 2018, 29(4): 1240-1248.

MA Chen, LIU Yanni, LIANG Lu, et al. Effects of combined application of chemical fertilizer and organic manure on wheat yield and leaching of residual nitrate-N in dryland soil[J]. Chinese Journal of Applied Ecology, 2018, 29(4): 1240-1248.

[48] 杨文飞, 杜小凤, 顾大路, 等. 长期施肥对根系及土壤微生态环境、养分和结构的影响综述[J]. 江西农业学报, 2020, 32(12): 37-44.

YANG Wenfei, DU Xiaofeng, GU Dalu, et al. Review of effects of long-term fertilization on root and soil micro-ecological environment, nutrients and structure[J]. Acta Agriculturae Jiangxi, 2020, 32(12): 37-44.

[49] 牛新胜, 巨晓棠. 我国有机肥料资源及利用[J]. 植物营养与肥料学报, 2017, 23(6): 1462-1479.

NIU Xinsheng, JU Xiaotang. Organic fertilizer resources and utilization in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1462-1479.

Effects of combination of organic and inorganic fertilizers on fertility and yield of winter wheat in fluvo-aquic soil

ZHANG Zhao1,2, ZHANG Guilong2,TANG Qiuxiang1,YAN Xueying2,ZHANG Yanjun2

(1. College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China; 2.Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China)

Abstract:【Objective】 To explore the effects of different fertilization on the fertility of wheat fields and nitrogen use efficiency and yield of winter wheat in the Huanghuaihai fluvo-aquic soil region in the hope of providing theoretical support and technical guidance for optimizing fertilization measures.

【Methods】" Based on the 12-year continuous fertilization treatment positioning experiment in Tianjin fluvo-aquic soil area, different fertilization treatments were set: including control (CK), single application of organic fertilizer (M), 50% reduction of chemical fertilizer combined with organic fertilizer (MF1), conventional quantitative fertilizer combined with organic fertilizer (MF2) and single application of chemical fertilizer (F).

【Results】 The results showed that, compared with the control, the fertilization treatments could significantly increase the soil organic matter and available nitrogen, phosphorus and potassium contents in wheat fields, and the combined application of organic and inorganic fertilizers had the best soil fertility improvement effect.Compared with the control, the soil organic matter increased by 92%, 48%, 78% and 20%, respectively in M, MF1, MF2.In terms of dry matter accumulation and yield, MF1 treatment significantly reduced leaf nitrogen content in booting-mature stage, promoted nitrogen transfer to grains, improved nitrogen use efficiency, and significantly increased the number of grains per ear and 1,000-grain weight, thereby increasing yield.The yields of MF1 and MF2 treatments reached 6,467and 6,345 kg/hm2, respectively, which were 12% and 9% higher than that of treatment F.

【Conclusion】" In conclusion, the combined application mode of chemical nitrogen fertilizer 115 kg/hm2 and organic fertilizer 15,000 kg/hm2 can reduce the chemical nitrogen input by 15% compared with the conventional mode, and keep the yield of winter wheat stable, which can be used as a recommended fertilization technology for winter wheat farmland in the fluvo-aquic soil area of the Huanghuaihai Plain.

Key words:winter wheat;combination of organic and inorganic fertilizers;" yield; nitrogen use efficiency; soil nutrients; dry matter accumulation

Fund projects:National Natural Science Foundation of China (32271651);Chinese academy of Agricultural Sciences Innovation Program (Agro-Environmental Protection Institute)

Correspondence author: TANG Qiuxiang(1980-),female,from Kaifeng,Henan,professor,research direction: farmland ecological environment,(E-mail)tangqiuxiang2004_2@163.com

ZHANG Yanjun(1981-),male,from Yuanping,Shanxi,associate research fellow,research direction: Bildiversity and eco-agriculture,(E-mail)zhangyanjun@caas.cn

标签:  土壤 

免责声明

本文来自网络,不代表本站立场。如有不愿意被转载的情况,请联系我们。