鸡circMICAL2的鉴定、组织表达谱分析及其功能预测

known 发布于 2025-07-26 阅读(473)

doi:10.6048/j.issn.1001-4330.2024.05.027

摘" 要:【目的】验证鸡环状RNA(circMICAL2)的真实性,研究circMICAL2在鸡肌肉生长发育中的潜在功能及调控机制。

【方法】基于circMICAL2环状序列设计特异性引物采用PCR扩增完成其真实性验证,并测定RNase R和放线菌素D处理检测circMICAL2的内源稳定性。采集16日龄三黄鸡(雏鸡)和180日龄三黄鸡(成年鸡)的心脏、肝脏、肺、肾脏、肠、皮肤、胸肌和腿肌等8个组织样本,采用实时荧光定量PCR(qRT-PCR)分析circMICAL2在鸡不同发育时期的组织表达图谱;运用生物信息学对circMICAL2靶向miRNA和mRNA进行预测,并开展GO功能和KEGG通路富集分析。

【结果】鸡circMICAL2真实存在,其环化稳定性强;circMICAL2在成年鸡和雏鸡各组织中广泛表达,且circMICAL2均在成年鸡和雏鸡的胸肌和腿肌肌肉中表达量最高,circMICAL2在成年鸡腿肌和胸肌中的表达量均显著高于雏鸡(Plt;0.05),circMICAL2与鸡肌肉生长发育调控密切相关。circMICAL2可靶向gga-miR-103-3p和gga-miR-130b-3p,调控下游225个潜在靶基因。circMICAL2的靶基因主要富集于TGF-β信号通路、MAPK信号通路、细胞周期等相关信号通路。

【结论】鸡circMICAL2真实存在,circMICAL2的表达对鸡不同生长发育时期肌肉的生长具有重要调控作用。

关键词:环状RNA;肌肉;鸡;组织表达;生长发育

中图分类号:S831""" 文献标志码:A""" 文章编号:1001-4330(2024)05-1284-08

收稿日期(Received):

2023-09-28

基金项目:

四川省科技计划-重点研发项目(2022YFN0039);乐山师范学院科技计划项目(DGZZ202002,22HX00051)

作者简介:

古丽帕日·艾克拜(1998-),女,新疆吐鲁番人,硕士研究生,研究方向为动物遗传育种与繁殖,(E-mail)1310784945@qq.com

通讯作者:

刘武军(1966- ),女,河南鹿邑人,教授,博士,硕士生/博士生导师,研究方向为动物遗传育种与繁殖,(E-mail)lwj_ws@163.com

王钢(1979-),男,重庆綦江人,教授,研究方向为动物疫病监测与防控、养殖业废弃物处理与利用,(E-mail)Lswanggang@163.com

0" 引 言

【研究意义】禽肉是我国第二大肉类消费品[1]。环状RNA(circular RNA,circRNA)是广泛存于生物体的一类内源性非编码RNA(non-coding RNA,ncRNA)。circRNA可分为四类:外显子环状RNA、内含子环状RNA、外显子-内含子环状RNA及基因间区环状RNA[2-3]。circRNA广泛存在于人、动物以及植物体内[4-5]。已证实circRNA在畜禽组织发育[6]、细胞分化[7]等具有重要的调控作用。【前人研究进展】circRNA是动物肌肉生长发育过程中的关键调控因子,通过与miRNA结合调控肌细胞的增殖与凋亡[8]。circSVIL通过使miR-17-3pa海绵化促进牛成肌细胞增殖和分化,抑制成肌细胞的凋亡[9]。circFgfr2、circQrich1、circMettl9和circCamta1在小鼠骨骼肌发育和肌母细胞分化过程中差异表达,其中circFgfr2具有促进小鼠肌肉生长发育及肌肉再生的调控作用[10]。鸡circRBFOX2.2-3和circRBFOX2.2-4可抑制miR-206活性,促进鸡成肌细胞的增殖和分化,调控鸡肌肉发育[11]。Zhao等[12]研究发现,鸡circCCDC91可作为miRNA-3家族的海绵激活IGF15-PI1K/AKT信号通路,促进鸡肌细胞增殖和分化。【本研究切入点】以前期在高通量测序中筛选获得在鸡胸肌中显著上调的circMICAL2为鸡肌肉生长发育调控候选环状RNA,需验证和分析鸡circMICAL2组织表达谱和circMICAL2靶向miRNA和mRNA预测及功能。【拟解决的关键问题】采用PCR扩增完成鸡circMICAL2真实性鉴定,并运用RNase R和放线菌素D处理检测circMICAL2的内源稳定性。鉴定鸡circMICAL2真实性,在鸡不同发育时期分析circMICAL2组织表达谱,并运用生物信息学分析鸡circMICAL2潜在靶向miRNA与mRNA预测及功能,研究circMICAL2在鸡肌肉生长发育调控中的分子功能,为鸡肌肉生长发育的分子调控机制阐释提供理论基础。

1" 材料与方法

1.1" 材 料

1.1.1" 鸡 只

试验分别选取3只16日龄三黄鸡(雏鸡)和180日龄三黄鸡(成年鸡)作为研究对象,统一饲养管理。戊巴比妥钠麻醉后放血屠宰,分别采集心脏、肝脏、肺、肾脏、肠、皮肤、胸肌和腿肌8个组织,用锡纸包裹,液氮速冻后于-80℃保存备用。

1.1.2" 主要试剂

Trizol,美国试剂赛默飞世尔科技公司;反转录试剂盒PrimeScriptTMRT reagent Kit(Takara),宝日医生物技术(北京)有限公司;SuperReal PreMix Color(SYBR Green),天根生化科技(北京)有限公司;防线菌素D ,欧克生命科学;RNase R、RNA纯化试剂盒,默克科技公司;琼脂糖,北京全式金生物技术有限公司;DMEM/F12培养基、胎牛血清,阿勒山(广州)生物科技有限公司等。

1.1.3" 主要仪器

SimpliAmpTM Thermal Cycler PCR仪、细胞CO2培养箱,赛默飞世尔科技公司;qTOWER3实时荧光定量PCR仪,德国耶拿公司;凝胶成像系统及扫描仪,广州佰图生物科技有限公司;高速冷冻离心机,上海卢湘仪离心机仪器有限公司;Nano-100微量分光光度计,杭州奥盛仪器有限公司;水平电泳槽电泳仪,北京六一生物科技有限公司等。

1.2" 方 法

1.2.1" 试验设计

鸡原代成肌细胞分离、培养及分化:取11日龄鸡胚进行原代肌细胞分离,在无菌条件下处死并采集腹部肌肉组织,用加入双抗的PBS冲洗肌肉组织3次并剪碎。将肌肉组织碎片置于胰蛋白酶的离心管中,在37°C的摇床上消化90 min,用完全培养基(含有20%胎牛血清DMEM/F12培养基)终止消化。使用70 μm过滤网过滤,滤液1 000 r/min离心5 min,弃上清。底层细胞用完全培养基进行重悬,最后将细胞铺到无菌细胞培养皿中,置于37 °C、5% CO2培养箱中培养。培养1 h后用无菌PBS清洗,移去未贴壁细胞。每12 h用显微镜观察细胞形态,待细胞汇合度达到90%以上时传代培养。

1.2.2" 总RNA提取与cDNA合成

取各组织样品约100 mg,匀浆后用TRIzol法完成总RNA提取,用1.5%琼脂糖凝胶电泳和Nano-100微量分光光度计分别验证总RNA的完整性、浓度及纯度,质检合格的RNA,-80℃保存备用。利用PrimeScriptTMRT reagent kit(Takara)反转录试剂盒进行RNA的反转录,获得cDNA模板。

1.2.3" 引物设计、合成与DNA测序

基于高通量测序获得circMICAL2序列信息,采用NCBI数据库Primer-BLAST 引物设计工具(https://www.ncbi.nlm.nih.gov/tools/primer-blast)完成鸡circMICAL2验证特异性扩增引物设计,包括正向引物和反向引物,线性MICAL2基因采用正向引物进行PCR扩增。PCR扩增产物经1.5%琼脂糖凝胶电泳检测,获得PCR扩增目的片段送成都擎科生物科技有限公司测序。表1,图1

1.2.4" circMICAL2的RNase R处理

根据RNase R说明书要求,将3 U/μg的RNase R与5μg的总RNA混合,在37℃下孵育15分钟,反应产物使用微量RNA纯化试剂盒纯化,并反转录为cDNA,采用反向引物进行qRT-PCR检测circMICAL2和线性MICAL2基因丰度变化。

1.2.5" circMICAL2内源稳定性检测(放线菌素D处理)

在原代肌细胞培养基中以2 μg/mL的浓度添加放线菌素D,分别在0、4、8、12 h培养后收取细胞提取总RNA,去除基因组DNA,反转录合成cDNA,采用qRT-PCR分别以反向引物对检测circMICAL2和线性MICAL2基因表达,对比分析circMICAL2和线性MICAL2基因的半衰期。

1.2.6" circMICAL2组织表达谱

采用qRT-PCR以反向引物对circMICAL2进行组织表达谱分析,GAPDH为内参。反应体系:2×SuperReal Color PreMix 10 μL;上、下游引物各1 μL;cDNA模板1 μL;加dd H2O至7 μL。反应条件:95℃预变性15 min,95℃变性10 s,56℃退火30 s,72℃延伸30 s,总40个循环,每个循环检测荧光强度,qRT-PCR结束后根据熔解曲线检测PCR产物的特异性,基因表达结果采用比较Ct值法(2-△△Ct)进行分析,每个样本重复3次。

1.2.7" circMICAL2靶向miRNA与基因预测与功能富集

使用targetscan 8.0和miRanda(www.bioinformatics.com.cn)软件对circMICAL2靶向miRNA及下游基因结合位点进行预测分析,利用Cytoscape 3.9.1构建circMICAL2-miRNA-mRNA网络互作图的制作,并采用DAVID(https://david.ncifcrf.gov)软件对circMICAL2靶基进行GO和KEGG富集分析。

1.3" 数据处理

运用GraphPad软件对两组间circMICAL2表达差异进行独立样本t检验并绘图,Plt;0.05表示统计意义上的差异显著。

2" 结果与分析

2.1" 鸡circMICAL2的鉴定

研究表明,以cDNA为模板时,正向引物和反向引物分别扩增出224 bp和348 bp目的条带,且条带清晰明亮;以基因组DNA(gDNA)为模板时,仅正向引物可扩增出目的条带,且条带明亮。结果证明鸡circMICAL2反向成环真实存在。鸡circMICAL2的闭合环状结构。图2,图3

2.2" circMICAL2的稳定性检测

研究表明,经RNase R酶消化处理组circMICAL2基因丰度与对照组相比无显著差异(Pgt;0.05),RNase R酶消化处理组线性MICAL2基因丰度极显著低于对照组(Plt;0.01),鸡circMICAL2环状结构对RNase R酶消化具有较强的抗性,鸡circMICAL2真实存在。图4

circMICAL2和线性MICAL2基因的表达随着放线菌素D处理时间的增长,circMICAL2和线性MICAL2基因的表达丰度均逐渐降低,但每个检测时间点circMICAL2表达丰度高于线性MICAL2基因,circMICAL2内源稳定较强。图5

2.3" circMICAL2鸡不同组织中的表达

研究表明,circMICAL2在成年鸡和雏鸡各组织中均有表达,其中在成年鸡和雏鸡胸肌和腿肌肌肉中的表达量均高于其他组织。circMICAL2在成年鸡胸肌中的表达量显著高于雏鸡(Plt;0.05),在成年鸡腿肌中的表达量显著高于雏鸡(Plt;0.05),在成年鸡心脏中的表达量显著高于雏鸡(Plt;0.05)。circMICAL2在鸡肌肉生长发育的过程中发挥着重要作用。图6

2.4" circMICAL2功能预测

研究表明,circMICAL2与gga-miR-103-3p和gga-miR-130b-3p具有靶向作用,其中gga-miR-103-3p具有178个潜在靶基因,gga-miR-130b-3p具有47个潜在靶基因。图7

共鉴定了49个显著富集GO条目,包括了13个细胞成分、18个生物学过程和18个分子功能生物进程上,主要富集于调控RNA聚合酶Ⅱ基因启动子的转录(GO:0006357~regulation of transcription from RNA polymerase II promoter)、细胞内讯息传递(GO:0035556~intracellular signal transduction)、细胞核(GO:0005634~nucleus)、细胞质(GO:0005737~cytoplasm)、细胞溶质(GO:0005829~cytosol)金属离子结合(GO:0046872~metal ion binding)、蛋白质丝氨酸/苏氨酸激酶活性(GO:0004674~protein serine/threonine kinase activity)等。图8

circMICAL2 的靶基因显著富集于8条信号通路,包括MAPK信号通路(gga04010:MAPK signaling pathway)、TGF-β信号通路(gga04350:TGF-beta signaling pathway)、细胞周期(gga04110:Cell cycle)、卵母细胞成熟抑制因子(gga04114:Oocyte meiosis)等。图9

3" 讨 论

3.1

circRNA不仅与人类疾病密切相关,circRNA还在牛、猪、鸡等经济动物生长发育、机体代谢以及繁殖形状等方面发挥着重要作用[13-15]。circRNA在动物肌肉生长发育过程中起着重要的调控作用,circRNA可通过与肌肉特异性miRNA相互作用,从而参与肌肉生长发育的调控,影响肌肉代谢及细胞能量水平[16-17]。Wei等[18]研究指出circLMO7作为miR-378a-3p的竞争性内源RNA参与牛肌肉发育,circLMO7的过度表达会抑制牛原代成肌细胞的分化。Liu等[19]研究指出绵羊骨骼肌发育同样与circRNA调控有关,其中circCHRNG作为miR-133海绵上调血清应答因子(SRF)和心肌细胞特异性增强因子2A(MEF2A)的表达水平,从而促进羊成肌细胞增殖。circRNA同样在鸡肌肉生长发育过程中发挥着重要调控作用。circRBFOX2s可以吸附miR-206来促进鸡成肌细胞增殖,具有调控鸡肌肉生长的作用[20]。circACLY消除gga-miR-6660-3p对静原鸡成肌细胞增殖和分化的抑制,从而促进静原鸡成肌细胞的增殖和分化[21]。余娇等[22]研究指出,circ-ZBTB10在肌肉组织中高表达,是鸡肌肉生长发育过程中的重要调控因子。研究验证了circMICAL2的真实性,circMICAL2组织表达谱分析表明circMICAL2在在成年鸡和雏鸡的胸肌和腿肌肌肉中表达量较高,且circMICAL2在鸡不同生长发育时期肌肉中的表达量具有显著差异,circMICAL2对鸡肌肉生长发育具有调控作用。

3.2

circRNA具有miRNA结合位点,可以作为miRNA海绵竞争性地结合miRNA调控下游靶基因的表达,从而发挥生物学作用。试验研究了circMICAL2靶向miRNA以及靶基因预测,分析circMICAL2可能存在的生物学功能。结果表明,circMICAL2靶向的miRNA分别为gga-miR-103-3p和gga-miR-130b-3p,并预测得到225个潜在靶基因。miR-103在动物肌细胞的增殖方面具有重要的调控作用,miR-103在牛骨骼肌卫星细胞分化的过程中表达量上调,具有促进牛骨骼肌卫星细胞的作用[23]。miR-130b能够通过靶向Sp1转录因子促进小鼠肌源分化,在骨骼肌再生和肌病进展中发挥作用[24]。miR-130b-3p负调控Rb1cc1在鸡原代成肌细胞分化中的表达,从而促进鸡肌肉生长发育[25]。后续研究中应进一步探讨circMICAL2与gga-miR-103-3p和gga-miR-130b-3p调控关系,基于miRNA下游调控靶基因阐释circMICAL2在鸡肌肉生长发育中的调控作用。通过对circMICAL2下游225个潜在靶基因的KEGG富集分析得出,circMICAL2的下游靶基因主要富集于TGF-β信号通路(TGF-beta signaling pathway)、MAPK信号通路(MAPK signaling pathway)、细胞周期(Cell cycle)等通路。值得注意的是转化生长因子-β(TGF-β)信号通路对肌肉的生长发育影响显著,TGF-β信号通路在骨骼肌生长发育调节中起着重要的作用[26]。TCEA3通过Annexin A1激活TGF-β信号通路从而促进小鼠成肌细胞的分化[27]。TGF-β家族成员肌肉生长抑制素(MSTN)在牛骨骼肌中高表达,敲除MSTN时可以促进牛肌肉卫星细胞的增殖[28]。MAPK信号通路已被证实参与调节猪、大鼠成肌细胞的增殖和分化[29- 30]。另外,MAPK通路同样被证实参与鸡骨骼肌生长发育调节[31]。

4" 结 论

鸡circMICAL2真实存在,circMICAL2在鸡的肌肉组织(胸肌和腿肌)中高表达,成年鸡胸肌和腿肌中circMICAL2表达水平均显著高于雏鸡(P<0.05)。circMICAL2靶向gga-miR-130b-3p和gga-miR-103-3p,且调控下游225个潜在靶基因。KEGG富集分析发现circMICAL2可能通过TGF-β和MAPK信号通路调控鸡肌肉生长发育。circMICAL2在鸡肌肉生长发育过程中发挥着重要的调控作用。

参考文献(References)

[1]

李向阳, 张莉. 2021年中国禽肉市场回顾及 “十四五” 时期展望[J]. 农业展望, 2022, 18(1): 33-39.

LI Xiangyang, ZHANG Li. Review on Chinas poultry market in 2021 and its outlook for the 14th five-year plan period[J]. Agricultural Outlook, 2022, 18(1): 33-39.

[2] 邓小英, 刘圣林, 胡浩, 等. CircRNA翻译功能的研究进展及问题[J]. 生理科学进展, 2022, 53(3): 234-238.

DENG Xiaoying, LIU Shenglin, HU Hao, et al. Research advances and problems on the translation functions of CircRNA[J]. Progress in Physiological Sciences, 2022, 53(3): 234-238.

[3] Bahn J H, Zhang Q, Li F, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva[J]. Clinical Chemistry, 2015, 61(1): 221-230.

[4] Rochow H, Franz A, Jung M, et al. Instability of circular RNAs in clinical tissue samples impairs their reliable expression analysis using RT-qPCR: from the myth of their advantage as biomarkers to reality[J]. Theranostics, 2020, 10(20): 9268-9279.

[5] Xie M Y, Yu T, Jing X M, et al. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation[J]. Molecular Cancer, 2020, 19(1): 112.

[6] Rybak-Wolf A, Stottmeister C, Gla?ar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J]. Molecular Cell, 2015, 58(5): 870-885.

[7] Peng W, Zhu S X, Chen J L, et al. Hsa_circRNA_33287 promotes the osteogenic differentiation of maxillary sinus membrane stem cells via miR-214-3p/Runx3[J]. Biomedicine amp; Pharmacotherapy = Biomedecine amp; Pharmacotherapie, 2019, 109: 1709-1717.

[8] Cai B L, Ma M T, Zhou Z, et al. circPTPN4 regulates myogenesis via the miR-499-3p/NAMPT axis[J]. Journal of Animal Science and Biotechnology," 2022, 13(1): 2.

[9] Yue B L, Yang H Y, Wu J Y, et al. circSVIL regulates bovine myoblast development by inhibiting STAT1 phosphorylation[J]. Science China Life Sciences, 2022, 65(2): 376-386.

[10] Yan J Y, Yang Y L, Fan X H, et al. circRNAome profiling reveals circFgfr2 regulates myogenesis and muscle regeneration via a feedback loop[J]. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13(1): 696-712.

[11] 欧阳宏佳. 环状RNA对鸡胚胎骨骼肌发育的影响[D]. 广州: 华南农业大学, 2017.

OUYANG Hongjia. Effect of circular RNA on skeletal muscle development of chicken embryos[D].Guangzhou: South China Agricultural University, 2017.

[12] Zhao J, Zhao X Y, Shen X X, et al. CircCCDC91 regulates chicken skeletal muscle development by sponging miR-15 family via activating IGF1-PI3K/AKT signaling pathway[J]. Poultry Science," 2022, 101(5): 101803.

[13] 徐海冬, 冷奇颖, PATRICIA Adu-Asiama, 等. 环状RNA的特征及其在畜禽中的研究进展[J]. 生物技术通报, 2018, 34(11): 56-69.

XU Haidong, LENG Qiying, ADUASIAMA PATRICIA, et al. Circular RNAs: research progress and its significance in birds and livestock[J]. Biotechnology Bulletin, 2018, 34(11): 56-69.

[14] 刘洪飞. 牛肌肉组织中品种特异性circQTL的鉴定和功能分析[D]. 杨凌: 西北农林科技大学, 2022.

LIU Hongfei. Identification and functional analysis of breed-specific circQTL in bovine muscle tissue[D].Yangling: Northwest A amp; F University, 2022.

[15] 付晓伟, 欧阳永灏, 洪乐, 等. 基于高通量测序技术的胰腺癌环状RNA差异表达谱分析[J]. 安徽医科大学学报, 2023, 58(1): 101-108.

FU Xiaowei, OUYANG Yonghao, HONG Le, et al. Analysis of differential expression profile of circRNA in pancreatic cancer based on high-throughput sequencing technology[J]. Acta Universitatis Medicinalis Anhui, 2023, 58(1): 101-108.

[16] 贺花, 徐倩颖, 黄永震, 等. 环状RNA概述及其在动物肌肉发育中的研究进展[J]. 黑龙江畜牧兽医, 2020(3): 32-35.

HE Hua, XU Qianying, HUANG Yongzhen, et al. Overview of circRNAs and its research progress in animal muscle development[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(3): 32-35.

[17] Liu R L, Liu X X, Bai X J, et al. Identification and characterization of circRNA in longissimus dorsi of different breeds of cattle[J]. Frontiers in Genetics, 2020, 11: 565085.

[18] Wei X F, Li H, Yang J M, et al. Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p[J]. Cell Death amp; Disease, 2017, 8(10): e3153.

[19] Liu Y, Chen Q, Bao J J, et al. Genome-wide analysis of circular RNAs reveals circCHRNG regulates sheep myoblast proliferation via miR-133/SRF and MEF2A axis[J]. International Journal of Molecular Sciences, 2022, 23(24): 16065.

[20] Ouyang H J, Chen X L, Wang Z J, et al. Circular RNAs are abundant and dynamically expressed during embryonic muscle development in chickens[J]. DNA Research: an International Journal for Rapid Publication of Reports on Genes and Genomes, 2018, 25(1): 71-86.

[21] 王卫振. 静原鸡circACLY调控成肌细胞增殖、分化和凋亡的机制研究[D]. 银川: 宁夏大学, 2022.

WANG Weizhen. Study on the Mechanism of circACLY Regulating the Proliferation, Differentiation and Apoptosis of Myoblasts in Jingyuan Chicken[D].Yinchuan: Ningxia University, 2022.

[22] 余娇, 黎镇晖, 聂庆华, 等. 环状RNA circZBTB10的鉴定及其对鸡骨骼肌细胞增殖的影响[J]. 中国家禽, 2018, 40(24): 7-11.

YU Jiao, LI Zhenhui, NIE Qinghua, et al. Identification of circZBTB10 and its function on chicken myoblast proliferation[J]. China Poultry, 2018, 40(24): 7-11.

[23] 孙晓峰, 张伟伟, 王阳, 等. MiR-103在牛骨骼肌卫星细胞中的分化调节作用[J]. 黑龙江畜牧兽医, 2015(15): 39-43, 294.

SUN Xiaofeng, ZHANG Weiwei, WANG Yang, et al. The role of miR-103 in the differentiation and regulation on bovine skeletal muscle satellite cells[J]. Heilongjiang Animal Science and Veterinary Medicine, 2015(15): 39-43, 294.

[24] Wang Y C, Yao X H, Ma M, et al. MiR-130b inhibits proliferation and promotes differentiation in myocytes via targeting Sp1[J]. Journal of Molecular Cell Biology, 2021, 13(6): 422-432.

[25] Xue J, Xue J W, Zhang J, et al. MiR-130b-3p/301b-3p negatively regulated Rb1cc1 expression on myogenic differentiation of chicken primary myoblasts[J]. Biotechnology Letters, 2017, 39(11): 1611-1619.

[26] 张菊香, 张鹏, 陈晓萍. TGF-β/肌肉生长抑制素信号通路对骨骼肌作用的研究进展[J]. 航天医学与医学工程, 2011, 24(3): 224-228.

ZHANG Juxiang, ZHANG Peng, CHEN Xiaoping. Research progress on roles of TGF-β/myostatin signaling pathway in skeletal muscle[J]. Space Medicine amp; Medical Engineering, 2011, 24(3): 224-228.

[27] 葛瑶. TCEA3通过ANXA1介导TGF-β通路进而影响小鼠成肌细胞分化[D]. 哈尔滨: 东北农业大学, 2019.

GE Yao. TCEA3 Promotes Differentiation of C2C12 Cells Via An Annexin A1-mediated TGF-β Signaling Pathway[D]. Harbin: Northeast Agricultural University, 2019.

[28] 胡思敏. 牛肌肉卫星细胞中抑制MSTN表达后对脂肪代谢相关基因的影响[D]. 呼和浩特: 内蒙古大学, 2015.

HU Simin. Effect of inhibiting MSTN expression in bovine muscle satellite cells on genes related to fat metabolism[D].Hohhot: Inner Mongolia University, 2015.

[29]""" 冯阳. MIR-133b,miR-214和miR-495通过MAPK信号通路调节成肌细胞增殖和分化的研究[D]. 武汉: 华中农业大学, 2011.

FENG Yang. The study of MIR-133b, miR-214 and miR-495 regulating myoblast proliferation and differentiation through MAPK signaling pathway[D]. Wuhan: Huazhong Agricultural University, 2011.

[30] Zou L X, Zhong Y Q, Li X, et al. 3D-printed porous tantalum scaffold improves muscle attachment via integrin-β1-activated AKT/MAPK signaling pathway[J]. ACS Biomaterials Science amp; Engineering," 2023, 9(2): 889-899.

[31]""" Wen L, Shumao L, Guihuan L ,et al. Integrative Analyses of miRNA-mRNA Interactions Reveal let-7b, miR-128 and MAPK Pathway Involvement in Muscle Mass Loss in Sex-Linked Dwarf Chickens[J]. International Journal of Molecular Sciences," 2016, 17(3): 276.

Identification of chicken circMICAL2, tissue expression profile analysis and its functional prediction

Gulipari Aikebai1, SHEN Xuemei2, YU Shigang1,2, WANG Gang2, YANG Yaling1, LIU Wujun2

(1. College of Animal Science/Xinjiang Agricultural University, Urumqi 830052, China 2. Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan/Leshan Normal University, Leshan Sichuan 614000,China )

Abstract:【Objective】 The purpose of this study is to verify the authenticity of chicken circular RNA (circMICAL2) and explore the function and regulation mechanism of circMICAL2 in chicken muscle growth and development.

【Methods】 Specific primers based on circMICAL2 circular sequences were designed by PCR amplification, and RNase R and actinomycin D treatments were performed to detect the endogenous stability of circMICAL2.Eight tissue samples from heart, liver, lung, kidney, intestine, skin, chest muscle and leg muscles of 16-day-old and 180-day-old chickens (adult chickens) were collected, and the tissue expression profile of circMICAL2 in different development periods was completed by real-time PCR (qRT-PCR); Bioinformatics was used to predict circMICAL2-targeted miRNA and mRNA, and to carry out GO function and KEGG pathway enrichment analysis.

【Results】 Chicken circMICAL2 really existed,and its cyclization stability was strong; circMICAL2 was widely expressed in all tissues of adults and chicks, and circMICAL2 was most highly expressed in their chest and leg muscles of adults and chicks, and the expression of circMICAL2 in both adult leg and thorax muscles was significantly higher than that in chicks (Plt;0.05), indicating that circMICAL2 was closely related to the regulation of chicken muscle growth and development. circMICAL2 targets gga-miR-103-3p and gga-miR-130b-3p regulated 225 downstream potential target genes. The target genes of circMICAL2 were mainly enriched in TGF-β signaling pathway, MAPK signaling pathway, cell cycle and other related signaling pathways.

【Conclusion】 Chicken circMICAL2 really exists, and the expression of circMICAL2 plays an important role in regulating the growth of muscle during different growth and development periods.

Key words:circRNA; muscle; chicken; tissue expression; growth and development

Fund projects:Sichuan Science and Technology Program (2022YFN0039); Leshan Normal University Science and Technology Program (DGZZ202002,22HX00051)

Correspondence author:LIU Wujun(1966-),female,from Luyi, Henan,professor,research direction:Animal genetics and breeding and reproduction,(E-mail)lwj_ws@163.com

WANG Gang(1979-),male,from Qijiang, Chongqing,professor,research direction:Monitoring and prevention and control of animal diseases,Treatment and utilization of aquaculture waste,(E-mail)Lswanggang@163.com

标签:  肌肉 

免责声明

本文来自网络,不代表本站立场。如有不愿意被转载的情况,请联系我们。

iidomino cuppor