综合评价不同灌溉处理对长绒棉生长及产量的影响

known 发布于 2025-07-28 阅读(207)

摘 要:【目的】探究新疆南疆机采长绒棉不同土壤水分上下限对其生长及产量的影响,为长绒棉田间用水管理提供理论依据。

【方法】以长绒棉为研究对象,设置2年大田试验,2021年3个灌水下限分别为50%、60%和70%田间持水量(FC),3个灌水上限80%、90%和100% FC及其不同组合的8个处理(Wa-1~Wa-8);2022年设置灌水上限为90% FC,在蕾期设置3个灌水下限分别为55%、65%和75% FC,花铃期设置3个灌水下限为60%、70%和80% FC完全组合的9个处理(Wb-1~Wb-9)。基于不同灌溉方案下生长指标、产量构成及水分利用效率等的差异,采用AHP-EWM-RSR综合评价法选取较优的试验处理。

【结果】增大蕾期灌水下限长绒棉株高和茎粗显著提升;花铃期70% FC的灌水下限有利于提高长绒棉产量和水分利用效率,而收获密度差异不显著,其中Wb-5处理(蕾期灌水上下限65%FC~90%FC,花铃期灌水上下限70%FC~90%FC)籽棉产量为6.33 t/hm2,较CK-2提高10.86%,其水分利用效率提高73.17%。

【结论】蕾期灌水上下限为65%~90% FC,花铃期灌水上下限为70%~90% FC,可促进生长并提高长绒棉籽棉产量和水分利用效率。

关键词:长绒棉;灌水上下限;产量;AHP-EWM-RSR综合评价法;水分利用效率

中图分类号:S562 ""文献标志码:A

文章编号:1001-4330(2025)01-0161-13

收稿日期(Received):

2024-07-28

基金项目:

新疆维吾尔自治区重点研发项目(2022B02009-3);新疆维吾尔自治区“三农”骨干人才培养项目(2022SNGGGCC016);新疆维吾尔自治区重大科技专项(2020A01002-2)

作者简介:

杜亚隆(1999-),男,河南新乡人,硕士研究生,研究方向为节水灌溉,(E-mail)duyalong017@163.com

通信作者:

马英杰(1969-),男,新疆乌鲁木齐人,教授,博士,硕士生/博士生导师,研究方向为灌溉排水,(E-mail)xj-myj@163.com

0 引 言

【研究意义】水资源是影响棉花生长的因素之一[1]。新疆南疆光热资源丰富,是长绒棉的唯一产区,长绒棉是高端纺织品的重要原料[2]。长绒棉具有很高的商品价值[3]。目前,新疆棉区广泛采用膜下滴灌技术[4],陆地棉膜下滴灌技术已日益成熟。长绒棉基因型与陆地棉不同[5],形成叶片、冠层结构的差异影响植株各阶段对水分的需求与陆地棉不同[6]。保证作物高产的前提下减少长绒棉用水量,实现作物高产与节水协同发展,是缓解水资源紧张和长绒棉稳步发展的关键。【前人研究进展】灌溉是确保作物高产的主要田间管理措施之一[7]。对于提高作物水分利用效率尤其是优化作物灌溉控制指标具有重要作用[8],如基于固定灌水周期和灌水定额[9, 10]、ETc[11, 12]、ET0[13]以及基于土壤水分上下限[14]进行灌溉。生育期等额灌溉易于人员管理且能够获得高产[15],但未考虑不同气候年的影响及水分利用效率较低等缺点;ETc和ET0作为灌溉控制指标主要受气象因素控制[12],忽略了植株根系吸水特性的影响;而灌水上下限作为灌溉控制指标则可同时兼顾气象因素,还有利于植株根系对水分的吸收。雷媛等[16]发现,计划湿润层深度60 cm和土壤水分下限设置为60% FC有助于小麦的节水高产。焦炳忠等[17]发现枣树各生育期灌水下限为萌芽展叶期55% FC、开花坐果期75% FC、果实膨大期65% FC、果实成熟期65% FC,上限均为90% FC,对微孔渗灌下枣生长和产量更优。He等[18]发现南疆陆地棉膜下滴灌适宜土壤水分上下限为75% FC~100% FC,籽棉产量达到7 146 kg/hm2。汪昌树等[19]研究发现,1膜2管4行的陆地棉膜下滴灌,在蕾期70% FC,花铃期80% FC,可以平衡水分利用率和产量的同时,籽棉产量达到6 195 kg/hm2。灌水上下限已经广泛应用于各种作物灌溉。【本研究切入点】新疆南疆地区长绒棉关键生育期灌水上下限对生长发育和产量形成研究尚为空白。需探究新疆南疆机采长绒棉不同土壤水分上下限对其生长及产量的影响。【拟解决的关键问题】根据长绒棉生育期不同需水要求,在蕾期和花铃期分析适宜的灌水上下限,调控营养生长和生殖生长的进程,分析不同灌水上下限对机采长绒棉植株生长的响应,探究机采长绒棉蕾期和花铃期灌水上下限对产量构成的影响,结合AHP-EWM-RSR综合评价方法得出适宜灌水上下限,为机采长绒棉节水、高产和优质栽培提供理论依据。

1 材料与方法

1.1 材 料

试验区位于新疆喀什地区岳普湖县库热四村(76°56′51″E,39°12′28″N),海拔1 191.57 m,为暖温带大陆性干旱气候,年均气温12.2 ℃,极端低温为-23.4 ℃,极端高温41.5 ℃,全年日照平均值为2 825.1 h,平均无霜期232 d,年降水量66.4 mm。试验地0~40 cm耕作层为砂壤土,土壤有机质3.88 g/kg,全氮0.30 g/kg,碱解氮62.90 g/kg,速效磷11.50 mg/kg,速效钾86 mg/kg。0~60 cm土层土壤平均容重为1.47 g/cm3,试验地灌溉水源为浅层地下水,矿化度0.954 g/L左右。2021年和2022年研究区长绒棉生长季平均气温、降雨量及参考作物蒸发蒸腾量(ET0)。表1,图1

供试长绒棉品种为新海45号,4月中旬播种,10月上旬收获。种植模式为1膜3管6行,行距64 cm+12 cm,株距9.5 cm。滴灌带滴头流量3.2 L/h,滴头间距0.2 m。图2

1.2 方 法

1.2.1 试验设计

2021年设置3个土壤含水率控制下限(50% FC,60% FC,70% FC,FC为田间持水量),3个土壤含水率控制上限(80% FC,90% FC,100% FC)共8个处理,对照组CK-1;2022年在上年基础上设置土壤水分控制上限均为90% FC,蕾期设置3个土壤水分控制下限(55% FC,65% FC,75% FC),花铃期设置3个土壤水分下限(60% FC,70% FC,80% FC)共9个处理,对照组CK-2,每个处理设置3个重复,随机排列。此外各小区之间均设有隔离带以防止水分交互作用。蕾期和花铃期按3∶7比例随水滴入N 510 kg/hm2,P2O5 454 kg/hm2,K2O 163 kg/hm2。表2,图3

根据申孝军等[20]公式,当土壤含水量达到对应上下限时灌溉,灌水定额通过式(1)计算得到:

1000M=hp(θ上限- θ下限).

(1)

式中,M为灌水定额(mm);p为湿润比,取0.74[21];h为计划湿润层深度,蕾期取0.4 m,花铃期取0.6 m; θ为体积含水率(%);蕾期和花铃期分别按0~40 cm和0~60 cm的土壤平均含水率作为灌水上下限判定标准。

1.2.2 测定指标

1.2.2.1 耗水量计算

计算棉花生育期内各阶段的土壤含水量与有效降雨量及作物耗水量。

ET=ΔW+I+P+Sg-Rf-D.(2)

式中,ET为生育期耗水量(mm);ΔW为播种前和收获时土壤含水率的差值(mm),I为灌水量(mm),P为降雨量(mm),Sg为地下水补给量(mm),D为深层渗漏(mm),Rf为地表径流(mm)。忽略Sg;试验采用滴灌,忽略D和Rf。

1.2.2.2 株高和茎粗

每个小区随机选取9株长势均匀的棉花并标记。采用卷尺(0.1 cm)和游标卡尺从苗期至花期打顶后,每7 d测定1次株高、茎粗,记录棉花株高、茎粗苗期到花铃期的变化。

1.2.2.3 灌溉水利用效率

WUE=100Y/ET.(3)

式中,WUE为水分利用效率(kg/m3);Y为棉花籽棉产量(t/hm2);ET为全生育期作物耗水量(mm)。

1.2.2.4 产量及产量构成因素

于棉花吐絮后期,在每个小区随机选择6.67 m2长势整齐的棉田进行测产,每个处理重复3次。测定棉花株数、铃数、单铃重,换算长绒棉籽棉产量,脱籽后计算衣分。

1.3 数据处理

运用Microsoft Excel 2021进行数据的整理,Microsoft PowerPoint 2021制作种植模式图,采用Origin 2021图表制作,用DPS 7.5统计软件进行方差分析,Ducan法进行处理间的多重比较(α=0.05)。

2 结果与分析

2.1 土壤水分调控下长绒棉株高动态变化

研究表明,不同土壤水分上下限调控对棉花株高影响显著(Plt;0.05)。土壤水分下限相同时,株高随水分上限增大呈上升趋势,展现为80%水分上限lt;90%水分上限≈100%水分上限。提高水分上限有助于棉花生长,但上限达到90%~100%时,对棉花株高影响较小(Pgt;0.05)。当土壤水分上限相同时,土壤水分下限每提高10%,株高增加2.40%~13.39%,较高的土壤水分下限使棉花根系一直处于湿润状态,使植株生长发育程度高于其他处理。

蕾期对土壤水分敏感程度高于花铃期。蕾期水分下限每降低10%,株高会减少11.53%~24.32%,而花铃期仅造成0.59%~12.50%的减少。在蕾期通过水分上下限对棉花株高进行调控。而花铃期受人工干预打顶和棉花自身由营养生长过渡到生殖生长的影响,株高总体变化幅度较少。图4

2.2 土壤水分调控下长绒棉茎粗动态变化

研究表明,各处理茎粗随生育期推进呈S型曲线持续增加。蕾期茎粗变化量约占全生育期的40.78%,而花铃期占比约15.97%。因此,蕾期和花铃期是调控棉花茎粗的关键生育期。对棉花蕾期和花铃期总体调控水分上下限时,各处理间展现的规律与株高受水分上下限影响变化规律相似。即当土壤水分上限提高10%时,茎粗增加0.13%~2.18%;当土壤水分下限提高10%时,茎粗增加2.33%~13.85%。同时,较低的土壤水分下限对长绒棉对株高和茎粗起到一定抑制作用,当土壤水分下限每降低10%,茎粗增长量降低3.51%~12.95%。

当花期提高土壤水分下限时,茎粗仍然缓慢增大,这与株高的变化大致相似。因此,虽然棉花株高受生长调节剂的影响,但在土壤水分下限提升时,株高和茎粗仍缓慢增长。其中土壤水分下限70%的增长幅度最大达6.61%~9.73%,较高的茎粗也为棉花产量提升打下了良好的基础。图5

2.3 土壤水分调控对棉花产量及其构成的影响

研究表明,不同灌水上下限对长绒棉单株有效铃数、单铃质量、籽棉产量、衣分及水分利用效率影响显著(P<0.05),对收获密度影响不显著(P>0.05)。当灌水下限相同时,籽棉产量随着灌水下限的提升,呈先增加后下降趋势。当上限相同时,籽棉产量随着灌水下限呈先增加后下降趋势。2021年Wa-5籽棉产量最高,为6.31 t/hm2;Wa-1最小,为5.78 t/hm2,差幅9.17%。单株有效铃数和单铃质量与籽棉产量规律相似,均以Wa-5最佳。

2022年当蕾期灌水下限相同时,提高花铃期灌水下限籽棉产量提升0.26%~6.79%,水分利用效率降低1.73%~12.91%。当蕾期灌水下限相同时,提高花铃期灌水下限籽棉产量先增加后下降,具体表现为Wb-5gt;Wb-8gt;Wb-2,Wb-5较其他处理高1.12%和1.93%。2022年Wb-5籽棉产量最高,为6.33 t/hm2;CK-2最小,为5.71 t/hm2,差幅10.86%。在花铃期设定适宜土壤水分下限有助于籽棉产量和水分利用效率提升。表3

2.4 长绒棉籽棉产量、WUE与生育期总灌水量的回归

研究表明,当籽棉产量和WUE达到理论最大值的95%,棉花生长季总用水量为371.08和337.16 mm;而籽棉产量和WUE达到理论最大值的90%,棉花生长季总用水量分别为339.34和474.49 mm。长绒棉籽棉产量和WUE不能同时达到最大,长绒棉生长和其他指标均要作为评价因子。图6

2.5 基于长绒棉生长和产量对不同灌水上下限处理进行综合评价

研究表明,不同的灌水处理对棉花生长影响明显,从而影响长绒棉的籽棉产量。小区试验共计17个处理为可行方案,结合株高X1、茎粗X2、籽棉产量X3、单铃重X4、衣分X5、单株成铃数X6、收获密度X7,水分

利用效率X8共计8个指标构建原始矩阵,综合专家意见和客观评价为最终评价指标。通过专家依据经验给各指标赋予相对重要性,然后求出各层次的层次单排序和层次总排序,在对各层次的判断矩阵进行一致性检验,计算可得一致性指标CI=0.045和平均随机一致性指标RI=1.404的比值CR=0.032lt;0.1时,判断矩阵具有满意的一致性,进而确定不同指标的主观权重waj[27]。

采用熵权法(EWM)确定客观权重时,首先将评价指标记作A=(Xij),Xij表示第i个样本第j个指标的属性值,然后对样本数据根据指标的分布规律确定指标评价标准和分级临界值,采用5等级100分制分别对正向指标和负向指标并归一化,进而由式Wbj=dj/∑nj=1dj计算客观权重wbj。

式中,dj表示第j个指标的差异度,且dj=1-ej,ej为第j个指标的熵值且ej=-k∑mi=1(pij×lnpij),pij为第j个指标第i个样本所占比重,由指标的标准化确定。其次根据式(4)计算各指标综合权重Wj。表4,图7

Wj=wajwbj∑mj=1wajwbj.(4)

各综合权重,使用非整秩对各指标秩和比由高到低排序。计算各处理RSRw值,根据RSR拟合值排名越靠前,该处理的综合性越好原则。2021年得出Wa-5处理为当年最优处理;2022年在2021年基础上,进一步改进灌水下限得Wb-5处理为最优,Wb-5处理(蕾期65% FC~90% FC,花铃期70% FC~90% FC)为较好处理。表5

3 讨 论3.1

株高是反映作物生长和发育形态的重要特征指标[22],茎粗是棉花产量的基础[23-26]。棉花不同品种及生育时期对灌水上下限的响应各不相同[18],其主要原因是受其品种和生物学特性的影响[27-30]。新疆南疆长绒棉因品种、长势均不同于陆地棉,将陆地棉灌溉制度套用于长绒棉种植管理,致使长绒棉水分利用率低下[6, 31]。陆地棉不同水分调控下适时适量灌溉技术日渐成熟,而长绒棉鲜有研究。株型是由株高、叶片、茎枝等器官在空间上的植株结构形态及时间上的变化动态组成[32]。合理株型是棉花高产的基础,因棉花营养生长和生殖生长重合期较长,高产株型和棉花产量具有正相关关系[33]。何平如等[34]发现陆地棉不同处理株高和茎粗增长表现为前期增长缓慢、中期快速增长、后期趋于平缓,与试验长绒棉这与陆地棉株高和茎粗生长规律相似[21]。陆地棉株高随土壤水分下限的增加而增加,但试验发现,长绒棉株高随土壤水分下限增加出现先增高后减小,其原因可能是长绒棉由于自身冠层变化特性与陆地棉不同[3, 35],加之南疆气温高土壤水分蒸发较大,覆膜滴灌会使根系上浮,灌水下限过高单次灌水量小,根系下扎较浅[36],无法获取充足水分,导致长绒棉高灌水下限花铃期株高和茎粗增长缓慢。3.2

此外,棉花产量与株高具有显著相关性,株高生长可间接反映生物量累积[37],进而影响棉花产量。刘素华等[38]发现亏缺灌溉会对棉花株高和产量造成不利影响;申孝军等[39]发现蕾期未形成丰产构型将对后期产量产生不利影响,与试验相一致;土壤水分过高或过低将会降低同化物对籽棉分配比例,水分过多促使植株营养生长延缓造成贪青晚熟,水分过少促使植株过早转向生殖生长甚至早衰,与何平如[40]的结果不同,其原因可能是长绒棉对水分胁迫响应与陆地棉不同。王心等[31]发现长绒棉采用1膜3行的种植模式,在75%的灌水下限时,籽棉产量虽然较高达5 099 kg/hm2,但WUE仅为1.26 kg/m3。可能是因蕾期和花铃期采用相同灌水下限,未对长绒棉实行精准灌溉,使得水分利用效率偏高。试验发现蕾期灌水下限为60% FC,花铃期70% FC时,可使蕾期保证高产株型的同时亦满足花铃期水分需求,促进了干物质同化作用,从而获得较高的籽棉产量和WUE。

3.3

考虑作物生长、产量、WUE等多指标耦合关系[41],宁松瑞和何平如等采用主成分分析对棉花产量等影响因素均得出较为适宜的水分下限[34, 42],但只考虑客观因素计算的权重,易忽视主观因素对结果的影响。侯翔皓等[43]采用隶属函数法、TOPSIS法和灰色关联度法评价籽棉产量、水氮利用效率及经济效益的水氮耦合效应,发现100%ETc、N350综合评价最高。然而以上方法或以主观赋权或以客观赋权,权重计算有失偏颇。故试验选用主客观综合赋权法来确定各指标权重[44]。评价方法使用非整秩法[45],用以改进RSR法编秩方法在秩次化时易损失原指标值定量信息的缺点。基于综合权重法的秩和比法具有更高的准确性。

采用AHP-EWM-RSR综合评价法结合株高、茎粗、籽棉产量、单铃重、单株成铃数、收获密度、WUE等综合评价后,发现2021年不同灌水上下限得Wa-5(蕾期和花铃期60% FC~90% FC)处理为当年较优处理,且不同灌水上限90% FC和100% FC的产量无显著性差异,但水分利用效率却差异显著。因此,综合各指标及综合评价得出的结果,确定出灌水上限90% FC既可以满足产量又可以获得较高的WUE。2022年改进试验方案,经综合评价得Wb-5(蕾期65% FC~90% FC,花铃期70% FC~90% FC)处理最优。

4 结 论4.1

蕾期65% FC的灌水下限,株高和茎粗生长适中;花铃期70% FC的灌水下限,株高和茎粗增长缓慢,促进植株从营养生长向生殖生长转化。株高控制在93~105 cm,茎粗控制在9.93~10.71 mm。4.2

随灌水上限提高,籽棉产量呈先增加后下降的趋势,灌水上限为90% FC的Wa-5处理,较其CK-1处理的籽棉产量和WUE分别提高8.05%和59.04%;随灌水下限的增加,籽棉产量先增加后降低,花铃期70% FC灌水下限的Wb-5处理,较CK-2处理的籽棉产量、单株成铃数、单铃重和WUE分别提高10.86%、15.95%、9.09%、84.62%。2022年试验完善关键生育期的灌水下限,在保证籽棉产量的同时提升了WUE。4.3

Wb-5处理(蕾期65% FC~90% FC,花铃期70% FC~90% FC)综合各指标最优,兼顾增产、节水、增效的效果最佳。

参考文献(References)

[1]杨广, 李万精, 任富天, 等. 不同矿化度咸水膜下滴灌棉花土壤盐分累积规律及其数值模拟[J]. 农业工程学报, 2021, 37(19): 73-83.

YANG Guang, LI Wanjing, REN Futian, et al. Soil salinity accumulation and model simulation of cotton under mulch drip irrigation with different salinity level water[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(19): 73-83.

[2] 闫曼曼, 郑剑超, 张巨松, 等. 调亏灌溉对海岛棉光合物质生产与分配的影响[J]. 干旱区研究, 2016, 33(6): 1351-1357.

YAN Manman, ZHENG Jianchao, ZHANG Jusong, et al. Effects of regulated deficit irrigation on production and distribution of photosynthetic matter in Gossypium barbadense L.[J]. Arid Zone Research, 2016, 33(6): 1351-1357.

[3] 王心. 种植模式与灌溉定额对机采长绒棉产量形成与采摘品质的影响[D]. 乌鲁木齐: 新疆农业大学, 2022.

WANG Xin. Effects of planting patterns and irrigation quotas on yield formation and picking quality of machine-picked long-staple cotton [D]. Urumqi: Xinjiang Agricultural University, 2022.

[4] 胡启瑞, 吉春容, 李迎春, 等. 膜下滴灌棉花蕾期干旱胁迫对光合特性及产量的影响[J]. 生态环境学报, 2023, 32(6): 1045-1052.

HU Qirui, JI Chunrong, LI Yingchun, et al. Effects of drought stress on photosynthetic characteristics and yield of cotton at bud stage under mulched drip irrigation[J]. Ecology and Environmental Sciences, 2023, 32(6): 1045-1052.

[5] 王天友, 冯春晖, 王有武, 等. 海岛棉不同果枝类型杂交F2代产量品质性状分布规律[J]. 新疆农业科学, 2020, 57(2): 209-218.

WANG Tianyou, FENG Chunhui, WANG Youwu, et al. Study on the distribution of yield and quality traits and their correlations in F2 generation island cottons with different fruit branches[J]. Xinjiang Agricultural Sciences, 2020, 57(2): 209-218.

[6] 姚贺盛, 张亚黎, 易小平, 等. 海岛棉和陆地棉叶片光合特性、冠层结构及物质生产的差异[J]. 中国农业科学, 2015, 48(2): 251-261.

YAO Hesheng, ZHANG Yali, YI Xiaoping, et al. Study on differences in comparative canopy structure characteristics and photosynthetic carbon assimilation of field-grown Pima Cotton(Gossypium barbadense) and upland Cotton(G. hirsutum)[J]. Scientia Agricultura Sinica, 2015, 48(2): 251-261.

[7] 张妮, 左强, 石建初, 等. ANSWER模型评估新疆咸水灌溉棉花产量与效益[J]. 农业工程学报, 2023, 39(2): 78-89.

ZHANG Ni, ZUO Qiang, SHI Jianchu, et al. Estimating the yields and profits of saline water irrigated cotton in Xinjiang based on ANSWER model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(2): 78-89.

[8] 宋喜山, 曹红霞, 何子建, 等. Aquacrop模型在北疆棉花生育期灌溉洗盐制度优化中的适用性[J]. 农业工程学报, 2023, 39(20): 111-122.

SONG Xishan, CAO Hongxia, HE Zijian, et al. Applicability of the Aquacrop model in optimization of irrigation and salt leaching schedule during the reproductive period of cotton in Northern Xinjiang of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(20): 111-122.

[9] 高福奎, 王璐, 李小刚, 等. 不同灌溉制度对南疆棉田水盐分布及作物生长的影响[J]. 灌溉排水学报, 2023, 42(1): 54-63.

GAO Fukui, WANG Lu, LI Xiaogang, et al. Effects of spring irrigation on water and salt distribution in soil and cotton growth in southern Xinjiang[J]. Journal of Irrigation and Drainage, 2023, 42(1): 54-63.

[10] 黄真真, 刘广明, 李金彪, 等. 滴灌带布置方式与灌水定额对土壤性状及棉花产量影响[J]. 土壤通报, 2020, 51(2): 325-331.

HUANG Zhenzhen, LIU Guangming, LI Jinbiao, et al. Effect of layout of drip irrigation belt and irrigation quota on soil properties and cotton yield[J]. Chinese Journal of Soil Science, 2020, 51(2): 325-331.

[11] 廖欢, 甘浩天, 刘凯, 等. 机采棉氮素吸收及产量的最佳水氮组合[J]. 植物营养与肥料学报, 2021, 27(12): 2229-2242.

LIAO Huan, GAN Haotian, LIU Kai, et al. Optimal water scheme and N rate for high N uptake and yield of machine-harvested cotton[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2229-2242.

[12] Wang H D, Wu L F, Wang X K, et al. Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation[J]. Agricultural Water Management, 2021, 245: 106662.

[13] Li M, Xiao J, Bai Y G, et al. Response mechanism of cotton growth to water and nutrients under drip irrigation with plastic mulch in southern Xinjiang[J]. Journal of Sensors, 2020: 1-16.

[14] Hong M, Zhang Z Y, Fu Q P, et al. Water requirement of solar greenhouse tomatoes with drip irrigation under mulch in the southwest of the Taklimakan Desert[J]. Water, 2022, 14(19): 3050.

[15] 赵波, 王振华, 李文昊. 滴灌方式及定额对北疆冬灌棉田土壤水盐分布及次年棉花生长的影响[J]. 农业工程学报, 2016, 32(6): 139-148.

ZHAO Bo, WANG Zhenhua, LI Wenhao. Effects of winter drip irrigation mode and quota on water and salt distribution in cotton field soil and cotton growth next year in northern Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 139-148.

[16] 雷媛, 刘战东, 张伟强, 等. 不同灌溉控制指标对冬小麦生长及耗水特性的影响[J]. 灌溉排水学报, 2021, 40(4): 8-15.

LEI Yuan, LIU Zhandong, ZHANG Weiqiang, et al. The effects of criteria used in irrigation control on growth and water consumption of winter wheat[J]. Journal of Irrigation and Drainage, 2021, 40(4): 8-15.

[17] 焦炳忠, 孙兆军, El-SAWY S M, 等. 基于土壤水分下限的灵武长枣微孔渗灌灌溉制度研究[J]. 农业机械学报, 2020, 51(5): 305-314.

JIAO Bingzhong, SUN Zhaojun, ELSAWY S M, et al. Irrigation schedule of microporous infiltration irrigation for Lingwu jujube based on lower limit of soil moisture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5): 305-314.

[18] He P R, Yu S E, Zhang F C, et al. Effects of soil water regulation on the cotton yield, fiber quality and soil salt accumulation under mulched drip irrigation in southern Xinjiang, China[J]. Agronomy, 2022, 12(5): 1246.

[19] 汪昌树, 杨鹏年, 姬亚琴, 等. 不同灌水下限对膜下滴灌棉花土壤水盐运移和产量的影响[J]. 干旱地区农业研究, 2016, 34(2): 232-238.

WANG Changshu, YANG Pengnian, JI Yaqin, et al. Effects of different irrigation lower limits on soil water-salt transport and yield of cotton under mulched drip-irrigation[J]. Agricultural Research in the Arid Areas, 2016, 34(2): 232-238.

[20] 申孝军, 孙景生, 张寄阳, 等. 滴灌条件下土壤平均含水率计算方法研究[J]. 水土保持学报, 2011, 25(3): 241-244, 253.

SHEN Xiaojun, SUN Jingsheng, ZHANG Jiyang, et al. Study on calculation method of soil moisture content under drip irrigation[J]. Journal of Soil and Water Conservation, 2011, 25(3): 241-244, 253.

[21] 潘俊杰, 付秋萍, 阿布都卡依木·阿布力米提, 等. 蕾期和花铃期不同灌水下限对滴灌棉花产量的影响[J]. 干旱地区农业研究, 2019, 37(5): 27-32.

PAN Junjie, FU Qiuping, Abudukayimu Abulimiti, et al. Effects of irrigation limits at bud stage and flowering stage on yield of drip irrigation cotton[J]. Agricultural Research in the Arid Areas, 2019, 37(5): 27-32.

[22] 王东旺, 王振华, 张金珠, 等. 滴灌带布置模式对北疆机采棉生长及土壤水热盐分布特征的影响[J]. 农业工程学报, 2022, 38(S1): 76-86.

WANG Dongwang, WANG Zhenhua, ZHANG Jinzhu, et al. Effects of drip tape modes on machine-harvest cotton growth and soil water, heat and salt distribution in Northern Xinjiang of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(S1): 76-86.

[23] 张迎春, 张富仓, 范军亮, 等. 滴灌技术参数对南疆棉花生长和土壤水盐的影响[J]. 农业工程学报, 2020, 36(24): 107-117.

ZHANG Yingchun, ZHANG Fucang, FAN Junliang, et al. Effects of drip irrigation technical parameters on cotton growth, soil moisture and salinity in Southern Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24): 107-117.

[24] 刘海光. 亏缺灌溉下施氮量对棉花GhNRT基因表达和氮素利用效率的影响[D]. 济南: 山东师范大学, 2021.

LIU Haiguang. Effects of nitrogen rate on GhNRT genes expression and nitrogen use efficiency of cotton under deficit irrigation [D]. Jinan: Shandong Normal University, 2021.

[25] 张慧, 张凯, 陈冰, 等. 不同灌溉量对新疆棉花生长发育及产量形成的影响[J]. 干旱区研究, 2022, 39(6): 1976-1985.

ZHANG Hui, ZHANG Kai, CHEN Bing, et al. Effects of different irrigation rates on cotton growth and yield formation in Xinjiang[J]. Arid Zone Research, 2022, 39(6): 1976-1985.

[26] 杨北方, 杨国正, 冯璐, 等. 亏缺灌溉对棉花生长和水分利用效率的影响研究进展[J]. 应用生态学报, 2021, 32(3): 1112-1118.

YANG Beifang, YANG Guozheng, FENG Lu, et al. Effects of deficit irrigation on cotton growth and water use efficiency: a review[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 1112-1118.

[27] 张泽宇, 曹红霞, 何子建, 等. 基于AHP-EWM-TOPSIS的温室辣椒最佳调亏灌溉方案优化研究[J]. 干旱地区农业研究, 2023, 41(1): 111-120.

ZHANG Zeyu, CAO Hongxia, HE Zijian, et al. Study on greenhouse pepper optimal regulated deficitirrigation scheme based on AHP-EWM-TOPSIS[J]. Agricultural Research in the Arid Areas, 2023, 41(1): 111-120.

[28] 倪肖卫, 郭建斌, 殷庆霏, 等. 园林废弃物堆肥用作绿化基质对佛甲草生长的影响[J]. 干旱区资源与环境, 2019, 33(4): 103-108.

NI Xiaowei, GUO Jianbin, YIN Qingfei, et al. Effects of green waste compost used as roof greening substrate on the growth of Sedum lineare[J]. Journal of Arid Land Resources and Environment, 2019, 33(4): 103-108.

[29] 田凤调. 秩和比法及其应用[J]. 中国医师杂志, 2002, 4(2): 115-119.

TIAN Fengdiao. Rank sum radio and its application[J]. Journal of Chinese Physician, 2002, 4(2): 115-119.

[30] Wellens J, Raes D, Fereres E, et al. Calibration and validation of the FAO AquaCrop water productivity model for cassava (Manihot esculenta Crantz)[J]. Agricultural Water Management, 2022, 263: 107491.

[31] 王心, 林涛, 崔建平, 等. 种植模式与灌溉定额对机采长绒棉产量及纤维品质形成的影响[J]. 新疆农业科学, 2023, 60(8): 1821-1829.

WANG Xin, LIN Tao, CUI Jianping, et al. Effects of planting mode and irrigation quota on yield and fiber quality of machine-picked long-staple cotton[J]. Xinjiang Agricultural Sciences, 2023, 60(8): 1821-1829.

[32] 白志刚. 不同棉花品种基于冠层PAR空间分布的株型特征与生长发育的研究[D]. 北京: 中国农业科学院, 2016.

BAI Zhigang. Study on the plant architecture and development of different cotton cultivars based on PAR spatial distribution in canopies [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.

[33] 张祥, 胡大鹏, 李亚兵, 等. 长江流域大麦后直播棉集中成铃与高产协同表达群体株型特征[J]. 棉花学报, 2017, 29(6): 513-524.

ZHANG Xiang, HU Dapeng, LI Yabing, et al. The plant architecture of direct-sowing cotton planted after barley harvested with high yield and centralized boll-setting[J]. Cotton Science, 2017, 29(6): 513-524.

[34] 何平如. 土壤水分调控对南疆滴灌棉花生长及土壤水盐肥运移的影响[D]. 杨凌: 西北农林科技大学, 2020.

HE Pingru. Effects of soil water regulation on cotton growth and soil water salt fertilizer transportation under drip irrigation in Southern Xinjian [D]. Yangling: Northwest A amp; F University, 2020.

[35] 李志鹏. 灌溉制度对南疆无膜滴灌棉花生长及土壤水热时空变化的影响[D]. 阿拉尔: 塔里木大学, 2022.

LI Zhipeng. Effects of irrigation regimes on the growth of filmless drip irrigation cotton and spatio-temporal variations of soil water and heat in Southern Xinjiang [D]. Aral: Tarim University, 2022.

[36] Wang J T, Du G F, Tian J S, et al. Mulched drip irrigation increases cotton yield and water use efficiency via improving fine root plasticity[J]. Agricultural Water Management, 2021, 255: 106992.

[37] 王珂, 杨娜, 席吉龙, 等. 三种数学模型模拟不同播期小麦籽粒灌浆过程的比较分析[J]. 麦类作物学报, 2022, 42(11): 1398-1407.

WANG Ke, YANG Na, XI Jilong, et al. Comparison of three mathematical equation for simulating the wheat grain filling process with different sowing dates[J]. Journal of Triticeae Crops, 2022, 42(11): 1398-1407.

[38] 刘素华, 彭延, 彭小峰, 等. 调亏灌溉与合理密植对旱区棉花生长发育及产量与品质的影响[J]. 棉花学报, 2016, 28(2): 184-188.

LIU Suhua, PENG Yan, PENG Xiaofeng, et al. Effects of regulated deficit irrigation and plant density on plant growth and yield and fiber quality of cotton in dry land area[J]. Cotton Science, 2016, 28(2): 184-188.

[39] 申孝军, 张寄阳, 孙景生, 等. 灌水模式及下限对滴灌棉花产量和品质的影响[J]. 排灌机械工程学报, 2014, 32(8): 711-718.

SHEN Xiaojun, ZHANG Jiyang, SUN Jingsheng, et al. Effect of drip irrigation pattern and irrigation lower limit on yield and quality of cotton[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(8): 711-718.

[40] 何平如, 张富仓, 侯翔皓, 等. 土壤水分调控对南疆滴灌棉花产量及土壤水盐分布的影响[J]. 水土保持研究, 2020, 27(2): 84-92.

HE Pingru, ZHANG Fucang, HOU Xianghao, et al. Effects of soil water regulation on cotton yield and soil water-salt distribution under drip irrigation in southern Xinjiang[J]. Research of Soil and Water Conservation, 2020, 27(2): 84-92.

[41] 陆红娜, 康绍忠, 杜太生, 等. 农业绿色高效节水研究现状与未来发展趋势[J]. 农学学报, 2018, 8(1): 155-162.

LU Hongna, KANG Shaozhong, DU Taisheng, et al. Current status and future research trend on water-saving high-efficiency and eco-friendly agriculture[J]. Journal of Agriculture, 2018, 8(1): 155-162.

[42] 宁松瑞, 颜安, 柳维扬. 盐胁迫膜下滴灌棉花生长及产量对氮磷钾追施配比的响应分析[J]. 水资源与水工程学报, 2022, 33(5): 208-215.

NING Songrui, YAN An, LIU Weiyang. Response of salt-stressed cotton growth and yield under film mulched drip irrigation to topdressing ratio of nitrogen, phosphorus and potassium[J]. Journal of Water Resources and Water Engineering, 2022, 33(5): 208-215.

[43] 侯翔皓. 南疆盐碱化农田膜下滴灌棉花水氮耦合效应与高效利用模式研究[D]. 杨凌: 西北农林科技大学, 2022.

HOU Xianghao. Study on coupling effect of water and nitrogen and efficient utilization mode of cotton under mulched drip irrigation in salinized fields in South of Xinjiang [D]. Yangling: Northwest A amp; F University, 2022.

[44] 姚辉, 尹尚先, 徐维, 等. 基于组合赋权的加权秩和比法的底板突水危险性评价[J]. 煤田地质与勘探, 2022, 50(6): 132-137.

YAO Hui, YIN Shangxian, XU Wei, et al. Risk assessment of floor water inrush by weighted rank sum ratio based on combination weighting[J]. Coal Geology amp; Exploration, 2022, 50(6): 132-137.

[45] 潘伟亮, 吴齐叶, 龚文静, 等. 改进秩和比法在城镇污水处理工艺优选中的应用[J]. 应用化工, 2021, 50(4): 1155-1158.

PAN Weiliang, WU Qiye, GONG Wenjing, et al. Application of improved rank sum ratio method in the process select of municipal sewage treatment[J]. Applied Chemical Industry, 2021, 50(4): 1155-1158.

Comprehensive evaluation of irrigation treatment based on

the growth and yield of drip-irrigated Gossypium barbadense

DU Yalong1,2,FU Qiuping1,2,AI Pengrui1,2,

MA Yingjie1,2,QI Tong3,PAN Yang1,2

(1." College of Water Conservancy and Civil Engineering,Xinjiang Agricultural University,Urumqi 830052 China;2.Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention,Urumqi 830052, China;3.Research Institute of Soil,Fertilizer and Agricultural Water Conservation,Xinjiang Academy of Agricultural Sciences,Urumqi 830091,China)

Abstract:【Objective】 To explore the effects of different upper and lower limits of soil moisture on the growth and yield of machine-harvested Gossypium barbadense in Southern Xinjiang in the hope of providing theoretical basis for field water management of the crop.

【Methods】" A two-year field experiment was carried out with Gossypium barbadense as the research object. In 2021, three irrigation lower limits were set as 50%, 60% and 70% field water holding capacity ( FC ), three irrigation upper limits were set as 80 %, 90% and 100% FC and eight treatments of different combinations ( Wa-1-Wa-8 ). In 2022, the irrigation upper limit was set at 90% FC, three irrigation lower limits were set at 55 %, 65 % and 75 % FC in bud stage, and three irrigation lower limits were set at 60%, 70% and 80% FC in flower and boll stage. Nine treatments ( Wb-1-Wb-9 ) were completely combined. Based on the difference of growth indexes, yield composition and water use efficiency under different irrigation schemes, the better experimental treatment was selected by AHP-EWM-RSR comprehensive evaluation method.

【Results】" The results showed that the increase of irrigation lower limit at bud stage significantly increased plant height and stem diameter. The irrigation lower limit of 70 % FC at flowering and boll stage was beneficial to increase yield and water use efficiency, and there was no significant difference in harvest density. The seed cotton yield of Wb-5 treatment (65 % FC-90 % FC at bud stage and 70% FC-90% FC at flowering and boll stage ) was 6.33 t / hm2, which was 10.86 % higher than that of CK-2, and its water use efficiency was 73.17% higher than that of CK-2.

【Conclusion】 Bud stage are 65% -90% FC, and the upper and lower limits of irrigation at flower and boll stage are 70 % -90 % FC, which can promote growth and increase yield and water use efficiency.

Key words:Gossypium barbadense ; upper and lower limits of irrigation ; yield ; AHP-EWM-RSR comprehensive evaluation method ; water use efficiency

Fund projects: The key R amp; D of Xinjiang Uygur Autonomous Region(2022B02009-3);" \"Three Rural Issues\" Backbone Training Project of Xinjiang Uygur Autonomous Region(2022SNGGGCC016); Major Scientific and Technological Special Project of Xinjiang Uygur Autonomous Region(2020A01002-2)

Correspondence author: MA Yingjie(1969-), male, from Urumqi, Xinjiang,professor, Ph.D., doctoral supervisor, research direction:the theory and technology of irrigation and drainage,(E-mail)xj-myj@163.com

标签:  下限 

免责声明

本文来自网络,不代表本站立场。如有不愿意被转载的情况,请联系我们。