封育对荒漠草原真菌群落的影响

known 发布于 2025-07-26 阅读(457)

doi:10.6048/j.issn.1001-4330.2024.05.023

摘" 要:【目的】评估封育对荒漠草原真菌群落的影响,并阐述真菌群落在土壤中的作用。

【方法】采用野外调查取样的方法,以封育14年的荒漠草原和相邻自由放牧荒漠草原为研究对象,基于内转录间隔区(ITS)技术与液质联用(LC-MS)技术研究封育对荒漠草原真菌群落的影响。

【结果】封育增加了荒漠草原子囊菌门(Ascomycota)的相对丰度,降低了担子菌门(Basidiomycota)、被孢霉门(Mortierellomycota)和unclassified_k__Fungi的相对丰度,显著改变了真菌群落的β多样性。此外,封育处理下土壤养分含量和植物生物量高于放牧处理。封育处理下真菌群落的内部联系更加紧密,主要关系为相互竞争,而放牧处理下真菌群落内部关系主要是互利共生。真菌群落与土壤总钾及植物生物量之间相关性较强。土壤差异真菌群落多与代谢物显著正相关。

【结论】封育改变了荒漠草原真菌群落丰富度,增加了植物地上与地下部分生物量。

关键词:荒漠草原;真菌多样性;真菌群落;差异代谢物;植物生物量

中图分类号:S815;Q938""" 文献标志码:A""" 文章编号:1001-4330(2024)05-1250-09

收稿日期(Received):

2023-10-11

基金项目:

新疆维吾尔自治区自然科学基金项目(2022D01C397)

作者简介:

耿美菊(1998-),女,硕士研究生,研究方向为土壤微生物,(E-mail)1743270502@qq.com

通讯作者:

王新绘(1979-),男,副研究员,博士,硕士生导师,研究方向为微生物生态,(E-mail)wangxh@xju.edu.cn

0" 引 言

【研究意义】草原是地球生态系统的重要组成部分,约占地球表面积的40%[1]。荒漠草原是草原向荒漠过渡的一种类型,具有保护生物多样性和维护生态平衡的生态功能[2]。而不合理的人类活动和自然因素会导致荒漠草原退化[3]、抑制土壤养分的积累[4]、影响生态系统的稳定性[5-6]。封育是恢复退化草原的有效措施之一,土壤真菌是微生物群落的重要组成部分,在养分循环中具有重要作用。因此,研究封育条件下真菌群落的变化,可以评估封育的有效性及土壤真菌在修复退化草原中的作用。阐明影响土壤真菌群落变化因素,对研究封育土壤中的微生物变化具有重要意义。

【前人研究进展】封育是一种有效恢复退化草原的措施[7]、改善土壤特性[8],从而有效缓解草地的退化。真菌群落是草原土壤中重要的功能群,在生态系统功能的调节中发挥着重要作用[9-12]。同时,土壤真菌群落作为环境变化指标,其群落结构变化可以指示土壤特征变化[13],真菌群落会随着土壤养分的变化改变其群落组成与多样性适应环境的变化[14]。代谢组学作为新兴的技术在微生物的研究中引起广泛关注[15]。通过代谢组学技术可以识别不同环境下土壤代谢物差异,更深入了解外部环境变化导致的土壤功能变化[16]。通过代谢组技术分析封育条件下土壤代谢变化显示[17-20],土壤环境是影响土壤真菌群落的重要因素。土壤养分[19-22]是影响土壤真菌群落变化的主要驱动因子[23],土壤有机碳会影响真菌组成与多样性,在真菌群落结构中起关键作用[24],分析土壤真菌群落与土壤理化性质之间的相互作用,能够探究驱动真菌群落聚集的变化[25]。植物生物量能表征生态系统初级生产力[26],当外界环境发生变化时,植物群落通过调节地上地下资源分配响应环境的变化,从而导致地上地下生物量发生变化[27]。利用网络分析方法探究土壤微生物之间的相互作用关系[28],更直观的了解真菌群落结构,揭示真菌群落成员的内部联系[24]。

【本研究切入点】目前关于封育对荒漠草原中真菌群落的研究较少,需要研究封育对草原中土壤真菌群落的影响。【拟解决的关键问题】

选择新疆地区封育14年荒漠草原为研究对象,利用ITS高通量测序技术分析真菌群落的组成和多样性特征,比较封育与放牧条件下物种组成差异,利用共线性网络揭示真菌群落内部的相互作用关系,研究封育对荒漠草原土壤真菌群落的影响。

1" 材料与方法

1.1" 材 料

试验区位于新疆乌鲁木齐市水磨沟区榆树沟草原监测站,选取封育14年的荒漠草原与相邻的自由放牧区为研究区,封育区N 43°46.617′,E 87° 42.999′,海拔1 058 m;放牧区N 43°46.555′,E 87°43.593′,海拔1 049 m。冬季时间长,春秋多大风,年均气温7~8℃。于2021年11月进行土壤样品采样,选择植被分布均匀样地采样。

1.2" 方 法

1.2.1" 试验设计

在封育14年的荒漠草原设置5个1 m×1 m的样地,相邻的自由放牧区也同样为上述设置,土壤样品采集均采用五点采样法,清除地表的凋落物、石头等杂物,采集0~20 cm的土壤样品,用于土壤微生物高通量测序和土壤理化性质的测量。

每个取样区随机建立5个1 m×1 m样地,用于测量植被地上生物量(Aboveground biomass)、灌木地下生物量(Shrub root biomass)和草本地下生物量(Herbal root biomass)。

1.2.2" 测定指标

1.2.2.1" 土壤理化性质

采集后的土壤样品进行风干,用于测量土壤理化性质。NaOH熔融-火焰光度法测量土壤总钾(Total potassium, TK)、NaOH熔融法-钼锑抗比色法测量土壤总磷(Soil total phosphorus, TP)、重铬酸钾-浓硫酸外加热法测量土壤有机质(Soil organic matter, SOM)、土壤有机碳(Soil organic carbon, SOC)为有机质与1.742的比值。

1.2.2.2" 植物生物量

采用收获法获取植被地上生物量(Aboveground biomass);挖土块法获取灌木地下生物量(Shrub root biomass)和草地下生物量(herb root biomass);采用直接测量法测量植株高度(Height)。将获取到的植物地上部分和根系分别装入信封袋中,在60℃干燥36 h测定其生物量。

1.2.2.3" 土壤真菌群落与土壤代谢

对ITS1F(5-CTTGGTCATTTAGAGGAAGTAA-3)和ITS2R(5-GCTGCGTTCTTCATCGATGC-3)全长进行PCR扩增。测序得到真菌OTU数据,测定土壤样本的真菌群落组成、α多样性、β多样性及差异真菌。LC-MS原始数据经过处理后,将MS和MSMS质谱信息与代谢公共数据库HMDB(http://www.hmdb.ca/)和Metlin(https://metlin.scripps.edu/)数据库进行匹配,得到代谢物信息。

1.3" 数据处理

封育与放牧的所有土壤理化指标及植物生物量数据用SPSS进行显著性方差分析。条形图用GraphPad Prism绘制。韦恩图、柱状图、冗余分析(RDA)图和热图利用R软件进行作图。采用mothur软件(http://www.mothur.org/wiki/Calculators)计算α多样性指数,基于spearman相关性rgt;0.6,Plt;0.05挑选物种分析相关性网络图。

2" 结果与分析

2.1" 封育对土壤理化性质与植物生物量的影响

研究表明,封育处理下土壤的理化性质与植物生物量发生了显著变化。土壤总磷、总钾、C/N、地上生物量、灌木地下生物量、草本地下生物量都发生了显著变化(Plt;0.05),其中,封育区土壤总磷、地上生物量、灌木地下生物量、草本地下生物量显著大于放牧区。封育的土壤养分水平和植物生物量高于放牧区,封育可以改变土壤养分情况与植物生长水平。图1

2.2" 封育对真菌群落多样性和群落组成的影响

2.2.1" 封育真菌群落多样性的影响

研究表明,封育改变了真菌群落的α多样性。Sobs指数、Ace指数、Chao指数表现为封育处理显著高于放牧处理,封育显著增加了真菌的丰富度。Simpson指数表现为封育处理高于放牧处理,Shannon指数表现为放牧处理高于封育处理,封育改变了真菌多样性,但不显著。Coverage指数均gt;99%。表1

2.2.2" 封育对真菌群落组成的影响

研究表明,Illumina测序共产生882 312个原始序列,处理后得到876 302个高质量序列,平均序列长度为245 bp,以97%的序列相似性进行归类后,共获得1 653个OTU,归属于12门,37纲,86目,188科和380属。封育与放牧处理共有516个OTU,封育处理特有OTU数目为737个,放牧处理特有OTU数目为400个,封育处理的OTU数目多于放牧处理。封育与放牧处理下土壤真菌群落门水平的子囊菌门(Ascomycota)相对丰度最高,封育处理下的相对丰度为89.77%,比放牧处理高19.22%;放牧处理下的担子菌门(Basidiomycota)相对丰度高于封育处理,差值为6.42%;放牧处理下的被孢霉门(Mortierellomycota)相对丰度为6.48%,与封育处理的差值为4.63%,均为封育与放牧处理的优势真菌。属水平真菌群落组成相对丰度前四位真菌属分别为刺孢属(Phaeomycocentrospora)、unclassified_c__Sordariomycetes、光黑壳属(Preussia)、曲霉属(Aspergillus)。封育处理下的刺孢属相对丰度为11.76%,放牧处理下的相对丰度为4.8%;封育处理下的unclassified_c__Sordariomycetes相对丰度较放牧处理高7.21%;封育处理下的光黑壳属相对丰度高于放牧处理,差值为6.58%;封育处理下的曲霉属相对丰度较放牧处理高1.65%。真菌群落中丰度显著差异的物种中除了封育处理下子囊菌门的相对丰度显著高于放牧区,霉梳菌门(Kickxellomycota)、球囊菌门(Glomeromycota)、被孢霉门、距孢霉门(Calcarisporiellomycota)相对丰度皆是放牧处理显著高于封育处理。封育使真菌出现了明显的分离,封育对真菌群落产生了影响,改变了真菌群落的β多样性。图2

注:研究区(A)、门(B)和属(C)的组成、差异真菌对比(D)、真菌β多样性(E)

Note:Study area(A), the composition of phyla (B) and genera (C), comparison of differential fungi (D), and fungal β diversity (E)

2.3" 土壤理化性质、植物生物量及差异代谢物对差异真菌的影响

研究表明,冗余分析(RDA)解释了真菌群落94.48%的总方差,分析了真菌群落与土壤理化性质、植物生物量、植株高度的关系。总钾、地上生物量、灌木地下生物量、草本地下生物量是影响真菌群落的主要因素。土壤总钾和C/N与霉梳菌、球囊菌、被孢霉菌、距孢霉菌呈显著正相关,但与子囊菌呈显著负相关,总磷、地上生物量、灌木地下生物量、草本地下生物量与霉梳菌、球囊菌、被孢霉菌、距孢霉菌呈显著负相关,总磷、草本地下生物量与子囊菌呈显著正相关。子囊菌多与代谢物正显著相关,但与肉豆蔻酸(Myristic acid)、4-亚甲基-L-谷氨酰胺(4-Methylene-L-glutamine)、十六烷二酸(Hexadecanedioic acid)显著负相关,而其霉梳菌、球囊菌、被孢霉菌、距孢霉菌余菌与肉豆蔻酸、4-亚甲基-L-谷氨酰胺、十六烷二酸呈显著正相关,与其余差异代谢物呈负相关。图3

注:总磷(TP)、总钾(TK)、有机碳(SOC)、植被地上生物量(Aboveground biomass)、灌木根生物量(Shrub root biomass)、草根生物量(herbal root biomass);图(A)、土壤理化性质(B)、差异代谢物(C)与差异真菌之间的相关关系(P lt; 0.001标记为***, P lt; 0.01 标记为**, P lt; 0.05 标记为*)

Note: Total phosphorus (TP), total potassium (TK), organic carbon (SOC), aboveground biomass, shrub root biomass, herbal root biomass;

(A), soil physicochemical properties (B), differential metabolites (C), and differential fungi during sealing(where P lt; 0.001 is marked as ***, P lt; 0.01 is marked as **, and P lt; 0.05 is marked as *)

2.4" 真菌群落内部的相关性

研究表明,封育处理下具有相关联的真菌共有45个,放牧处理下具有相关联的真菌有43个。放牧处理有较高相连的节点数目,平均聚类系数放牧处理较高,且放牧处理下真菌群落具有更高的正相关性。图4

3" 讨论

3.1" 封育对土壤理化性质与植物生物量的影响

封育处理增加了土壤中有机碳含量,显著增加了土壤总磷、地上生物量、灌木地下生物量、草本地下生物量含量,与前人的结果类似[6,15]。封育减少了牲畜对植物的食用和踩踏行为,增强了植物的光合能力,从而影响光合产物的合成和积累。总磷等养分的增加,使植物能够从土壤中获取足够的养分,最终影响植物的生物量[29,30]。总之,封育改变了土壤理化指标,增加了植物生物量。

3.2" 封育改变了真菌群落组成和多样性

封育显著增加了土壤真菌群落丰富度(即Chao、ACE,Sobs)[31],封育处理下的土壤生境更加丰富。封育与放牧处理的土壤真菌群落结构有显著差异,封育改变了真菌群落的β多样性,与前人[31]结果类似,封育处理改变了真菌群落的结构。研究结果表明,封育与放牧地区真菌门主要为子囊菌门、担子菌门、被孢霉门,三类真菌门占封育地区与放牧地区真菌的96.13%和87.96%,是许多研究中土壤真菌群落的优势菌[32],是土壤中的核心微生物[33],该真菌对微生物群的功能和稳定性有重要作用[34]。除了子囊菌门、被孢霉门、球霉门、灰霉门、距孢霉门外,其余真菌门的丰度无差异,证明其余真菌对封育与放牧并不敏感[34]。子囊菌门是真菌群落中最多样的真菌门[35],在凋落物分解过程和营养循环中有重要作用[36],子囊菌可能会在低营养需求的情况下增强资源竞争[31],封育使地面积累了更多营养物质,将使子囊菌门这种快速生长的多养型真菌丰度增加[24]。

3.3" 差异真菌与理化指标、植物生物量及差异代谢物的联系

土壤总磷、地上生物量、灌木地下生物量、草本地下生物量显著影响了土壤真菌群落,植物生物量是真菌群落组成的关键因素[37]。在封育处理与放牧处理的差异真菌群落中,土壤总磷通常与除子囊菌外的差异真菌呈负相关。在封育处理过程中,随着土壤总磷含量的显著增加,与总磷呈负相关的差异真菌丰度均减少,而与总磷呈正相关的子囊菌的相对丰度增加,磷会改变微生物群落组成[38]。代谢物与内生真菌之间存在显著相关性[39],研究结果表明,12种主要的差异代谢物包括氨基酸、脂质、碳水化合物。子囊菌与肉豆蔻酸、4-亚甲基-L-谷氨酰胺、十六烷二酸显著负相关[16],子囊菌抑制这些代谢物的积累。肉豆蔻酸会在不利的情况下增加来适应环境变化[40]。除子囊菌外的差异真菌与肉豆蔻酸、4-亚甲基-L-谷氨酰胺、十六烷二酸显著正相关。土壤代谢产物与真菌群落之间的关系将指导植物通过土壤改良或生物技术来提高植物产量[41]。

3.4" 封育条件下真菌内部关联性

网络分析能够探究真菌群落在封育与放牧处理下的相互作用[13,42]。研究结果表明,真菌群落内部存在相关关系。与封育处理相比,放牧处理的真菌群落之间正相关关系较多,且真菌群落之间更多的关系为合作共生,这些真菌群落适应放牧的土壤环境。封育处理下的营养物质比较丰富,所以真菌群落间的竞争较大,真菌群落之间的关系多为相互竞争,可能对封育处理下的真菌群落组成产生较大影响[34]。共生网络中真菌群落之间的协同关系有助于土壤中养分的转化,促进草地的生态功能,因此封育改变了真菌群落的共生联系。

4" 结 论

封育处理改变了真菌群落结构,增加了子囊菌门的相对丰度,降低了担子菌门、被孢霉门的相对丰度。封育处理显著改变荒漠草原中土壤真菌群落的丰富度。显著增加了土壤总磷的含量、植物地上生物量、灌木地下生物量、草本地下生物量。真菌群落与土壤总钾及植物生物量之间相关性较强。土壤差异真菌群落多与代谢物显著正相关。封育处理改变了真菌群落的网络共生模式,封育处理下的真菌主要为竞争关系,而放牧处理下的真菌关系主要为共生关系。

参考文献(References)

[1]

Dlamini P, Chivenge P, Chaplot V. Overgrazing decreases soil organic carbon stocks the most under dry climates and low soil pH: a meta-analysis shows[J]. Agriculture, Ecosystems amp; Environment, 2016, 221: 258-269.

[2] Kang B, Bowatte S, Hou F. Soil microbial communities and their relationships to soil properties at different depths in an alpine meadow and desert grassland in the Qilian mountain range of China [J]. Journal of Arid Environments, 2021, 184: 104316.

[3] Liu S B, Zamanian K, Schleuss P M, et al. Degradation of Tibetan grasslands: consequences for carbon and nutrient cycles[J]. Agriculture, Ecosystems amp; Environment, 2018, 252: 93-104.

[4] Gao X X, Dong S K, Xu Y D, et al. Resilience of revegetated grassland for restoring severely degraded alpine meadows is driven by plant and soil quality along recovery time: a case study from the Three-river Headwater Area of Qinghai-Tibetan Plateau[J]. Agriculture, Ecosystems amp; Environment, 2019, 279: 169-177.

[5] Huhe, Chen X J, Hou F J, et al. Bacterial and fungal community structures in Loess Plateau grasslands with different grazing intensities[J]. Frontiers in Microbiology, 2017, 8: 606.

[6] Cheng J M, Jing G H, Wei L, et al. Long-term grazing exclusion effects on vegetation characteristics, soil properties and bacterial communities in the semi-arid grasslands of China[J]. Ecological Engineering, 2016, 97: 170-178.

[7] Zhang C, Liu G B, Song Z L, et al. Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands[J]. Soil Biology and Biochemistry, 2018, 124: 47-58.

[8] Yin Y L, Wang Y Q, Li S X, et al. Soil microbial character response to plant community variation after grazing prohibition for 10years in a Qinghai-Tibetan alpine meadow[J]. Plant and Soil, 2021, 458(1): 175-189.

[9] 单贵莲, 陈功, 宁发, 等. 典型草原恢复演替过程中土壤微生物及酶活性动态变化研究[J]. 草地学报, 2012, 20(2): 292-297.

SHAN Guilian, CHEN Gong, NING Fa, et al. Dynamics of soil microorganism and enzyme activity in typical steppe of restoration succession process[J]. Acta Agrestia Sinica, 2012, 20(2): 292-297.

[10] Sun S, Li S, Avera B N, et al. Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration[J]. Applied and Environmental Microbiology, 2017, 83(14): e00966-e00917.

[11] Li H L, Ostermann A, Karunarathna S C, et al. The importance of plot size and the number of sampling seasons on capturing macrofungal species richness[J]. Fungal Biology, 2018, 122(7): 692-700.

[12] Ladwig L M, Bell-Dereske L P, Bell K C, et al. Soil fungal composition changes with shrub encroachment in the northern Chihuahuan Desert[J]. Fungal Ecology, 2021, 53: 101096.

[13] Wu D, Zhang M M, Peng M, et al. Variations in soil functional fungal community structure associated with pure and mixed plantations in typical temperate forests of China[J]. Frontiers in Microbiology, 2019, 10: 1636.

[14] Schulz S, Brankatschk R, Dümig A, et al. The role of microorganisms at different stages of ecosystem development for soil formation[J]. Biogeosciences, 2013, 10(6): 3983-3996.

[15] Buyer J S, Vinyard B, Maul J, et al. Combined extraction method for metabolomic and PLFA analysis of soil[J]. Applied Soil Ecology, 2019, 135: 129-136.

[16] Bi B Y, Wang K Y, Zhang H, et al. Plants use rhizosphere metabolites to regulate soil microbial diversity[J]. Land Degradation amp; Development, 2021, 32(18): 5267-5280.

[17] Jones O A H, Sdepanian S, Lofts S, et al. Metabolomic analysis of soil communities can be used for pollution assessment[J]. Environmental Toxicology and Chemistry, 2014, 33(1): 61-64.

[18] Li Y X, Laborda P, Xie X L, et al. Spartina alterniflora invasion alters soil microbial metabolism in coastal wetland of China[J]. Estuarine, Coastal and Shelf Science, 2020, 245: 106982.

[19] Xu M P, Li W J, Wang J Y, et al. Soil ecoenzymatic stoichiometry reveals microbial phosphorus limitation after vegetation restoration on the Loess Plateau, China[J]. The Science of the Total Environment, 2022, 815: 152918.

[20] Wang X, Cui Y X, Zhang X C, et al. A novel extracellular enzyme stoichiometry method to evaluate soil heavy metal contamination: evidence derived from microbial metabolic limitation[J]. Science of the Total Environment, 2020, 738: 139709.

[21] Coince A, Cal O, Bach C, et al. Below-ground fine-scale distribution and soil versus fine root detection of fungal and soil oomycete communities in a French beech forest[J]. Fungal Ecology, 2013, 6(3): 223-235.

[22] Liu J J, Sui Y Y, Yu Z H, et al. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of Northeast China[J]. Soil Biology and Biochemistry, 2015, 83: 29-39.

[23] Lladó S, López-Mondéjar R, Baldrian P. Drivers of microbial community structure in forest soils[J]. Applied Microbiology and Biotechnology, 2018, 102(10): 4331-4338.

[24] Chen L, Xiang W H, Wu H L, et al. Contrasting patterns and drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests[J]. Applied Microbiology and Biotechnology, 2019, 103(13): 5421-5433.

[25] Schappe T, Albornoz F E, Turner B L, et al. The role of soil chemistry and plant neighbourhoods in structuring fungal communities in three Panamanian rainforests[J]. Journal of Ecology, 2017, 105(3): 569-579.

[26] 向雪梅, 德科加, 张琳, 等. 氮素添加下短期内高寒草甸生物量与养分间的关系[J]. 中国草地学报, 2023, 45(1): 53-61.

XIANG Xuemei, DE Kejia, ZHANG Lin, et al. Relationship between biomass and nutrients of alpine meadows in the short term under nitrogen addition[J]. Chinese Journal of Grassland, 2023, 45(1): 53-61.

[27] 刘文兰, 师尚礼, 田福平, 等. 紫花苜蓿生物量空间层次分布与叶片C、N、P化学计量特征对P添加的响应[J]. 草地学报, 2017, 25(2): 322-329.

LIU Wenlan, SHI Shangli, TIAN Fuping, et al. Spatial distribution of alfalfa biomass and response of leaf C, N, P ecological stoichiometry to P addition[J]. Acta Agrestia Sinica, 2017, 25(2): 322-329.

[28] Toju H, Kishida O, Katayama N, et al. Networks depicting the fine-scale co-occurrences of fungi in soil horizons[J]. PLoS One, 2016, 11(11): e0165987.

[29] 张彬, 李邵宇, 古琛, 等. 内蒙古荒漠草原4种优势植物生物量分配对不同放牧强度的响应[J]. 草地学报, 2022, 30(12): 3355-3363.

ZHANG Bin, LI Shaoyu, GU Chen, et al. Biomass allocation of four dominant plant species in Inner Mongolia Desert grasslands in response to different grazing intensities[J]. Acta Agrestia Sinica, 2022, 30(12): 3355-3363.

[30] Qiu L P, Wei X R, Zhang X C, et al. Ecosystem carbon and nitrogen accumulation after grazing exclusion in semiarid grassland[J]. PLoS One, 2013, 8(1): e55433.

[31] Wang Z, Ding Y, Jin K, et al. Soil bacterial and fungal communities are linked with plant functional types and soil properties under different grazing intensities[J]. European Journal of Soil Science," 2022, 73(1): e13195.

[32] Cassman N A, Leite M F A, Pan Y, et al. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland[J]. Scientific Reports, 2016, 6: 23680.

[33] Xiao C C, Ran S J, Huang Z W, et al. Bacterial diversity and community structure of supragingival plaques in adults with dental health or caries revealed by 16S pyrosequencing[J]. Frontiers in Microbiology, 2016, 7: 1145.

[34] Chao Y Q, Liu W S, Chen Y M, et al. Structure, variation, and co-occurrence of soil microbial communities in abandoned sites of a rare earth elements mine[J]. Environmental Science amp; Technology, 2016, 50(21): 11481-11490.

[35] Wang J X, Gao J, Zhang H Q, et al. Changes in rhizosphere soil fungal communities ofPinus tabuliformisplantations at different development stages on the Loess Plateau[J]. International Journal of Molecular Sciences, 2022, 23(12): 6753.

[36] Hartmann M, Brunner I, Hagedorn F, et al. A decade of irrigation transforms the soil microbiome of a semi-arid pine forest[J]. Molecular Ecology," 2017, 26(4): 1190-1206.

[37]Wang Z, Zhang Q, Staley C, et al. Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability [J]. Biology and Fertility of Soils, 2019, 55(2): 121-134.

[38] 程红岩. 旱作农田土壤微生物群落及代谢产物对磷肥管理的响应[D]. 杨凌: 西北农林科技大学, 2022.

CHENG Hongyan. Response of Soil Microbial Communities and Metabolites to Phosphorus Fertilizer Management in Dryland Farmland[D]. Yangling: Northwest A amp; F University, 2022.

[39] Cui J L, Gong Y, Vijayakumar V, et al. Correlation in chemical metabolome and endophytic mycobiome in Cynomorium songaricum from different desert locations in China[J]. Journal of Agricultural and Food Chemistry, 2019, 67(13): 3554-3564.

[40] Yang X, Lai J L, Zhang Y, et al. Microbial community structure and metabolome profiling characteristics of soil contaminated by TNT, RDX, and HMX[J]. Environmental Pollution, 2021, 285: 117478.

[41] Csorba C, Rodi N, Zhao Y Y, et al. Metabolite production inAlkanna tinctoria links plant development with the recruitment of individual members of microbiome thriving at the root-soil interface[J]. mSystems, 2022, 7(5): e0045122.

[42] Cheng H Y, Yuan M S, Tang L, et al. Integrated microbiology and metabolomics analysis reveal responses of soil microorganisms and metabolic functions to phosphorus fertilizer on semiarid farm[J]. The Science of the Total Environment, 2022, 817: 152878.

Effects of sealing on fungal communities in desert grasslands

GENG Meiju1,2,WANG Xinhui1,2,LIU Xiaoying1,2,LYU Pei1,2

((1. College of Ecology and Environment, Xinjiang University/Key Laboratory of Oasis Ecology of Ministry of Education, Urumqi 830046, China; 2. Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe Xinjiang 833305, China)

Abstract:【Objective】 Assess the response of closure to fungal communities and to describe the role of fungal communities in the soil.

【Methods】" A field survey was conducted to investigate the effect of sealing on the fungal communities of desert grasslands based on the internal transcribed spacer (ITS) technique and liquid chromatography-mass spectrometry (LC-MS), using 14 years of sealing and adjacent free-grazing desert grasslands as the study objects.

【Results】 The results showed that sealing increased the community abundance of Ascomycota and decreased the community abundance of Basidiomycota, Mortierellomycota, and unclassified_k_Fungi, significantly altered the beta diversity of the fungal community.In addition, soil nutrient content and plant biomass were higher under the sealing treatment than under the grazing treatment.The fungal communities were more closely linked internally under closed conditions, with the main relationships being competitive with each other, whereas under grazing conditions the fungal communities were mainly in a mutually beneficial symbiotic relationship.A strong correlation between fungal communities and total soil potassium and plant biomass.Soil differential fungal communities were mostly significantly and positively correlated with metabolites.

【Conclusion】" Sealing altered fungal community richness and increased plant biomass above and below ground.

Key words:desert grassland; fungal diversity; fungal community; differential metabolites; plant biomass

Fund project:Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01C397)

Correspondence author: WANG Xinhui (1979-), male, Ph.D., associate researcher, research direction: microbial ecology, (E-mail)wangxh@xju.edu.cn

标签:  真菌 

免责声明

本文来自网络,不代表本站立场。如有不愿意被转载的情况,请联系我们。