季节性冻融期土壤微生物的数量影响因素Meta分析

known 发布于 2025-07-26 阅读(235)

doi:10.6048/j.issn.1001-4330.2024.05.022

摘" 要:【目的】研究季节性冻融期土壤细菌和真菌数量的影响因素。

【方法】采集中国知网、Web of science等数据库相关土壤季节性冻融期的数据,根据排除和纳入标准,采用Newcastle-Ottawa Scale (NOS)评价标准对文献进行质量评价,将得分≥6分且高质量的文献纳入研究,运用RevMan5.4对其进行Meta分析。

【结果】42篇文献符合纳入标准,其中,SCI文章7篇,CSCD文章27篇。季节性冻融期土壤含水量对土壤细菌的影响显著性最大;土壤pH值对土壤真菌的影响显著性最大,土壤有机质对土壤细菌和真菌影响显著性最小。季节性冻融期,土壤有机氮对土壤细菌影响的优势程度最大,土壤含水量对土壤真菌影响的优势程度最大。

【结论】季节性冻融期土壤pH值和土壤含水量对土壤细菌和真菌起到决定性作用。

关键词:Meta分析;土壤细菌;土壤真菌;季节性冻融期

中图分类号:S188""" 文献标志码:A""" 文章编号:1001-4330(2024)05-1236-14

收稿日期(Received):

2023-10-09

基金项目:

南疆重点产业创新发展支撑计划项目(2021DB012,2022DB020);国家自然科学基金项目(U1803244)

作者简介:

杨跃发(1995-),男,山西临汾人,硕士研究生,研究方向为节水灌溉, (E-mail)1131183413@qq.com

通讯作者:

王春霞(1979-),女,山东郓城人,教授,博士,硕士生导师,研究方向为节水灌溉,(E-mail)410443356@qq.com

0" 引 言

【研究意义】土壤微生物在生态系统生物化学循环过程中起着关键作用[1]。土壤微生物多样性有助于维持土壤的生态系统和提高土壤生态环境恶化的缓冲能力[2-6]。目前对于季节性冻融期土壤微生物数量的变化还持有不同观点,尚有待深入分析和总结。【前人研究进展】季节性冻融是冰冻圈冷生环境(土壤温度≤0℃)的一种自然现象[7],尽管如此,部分土壤微生物仍能存活。季节性冻融过程改变了土壤理化性质,进而对土壤微生物产生影响,目前有文献主要从土壤微生物区系、数量等方面研究冻融作用对土壤微生物的影响[8]。Finegold等[9]通过室内试验发现,冻融期温度下降导致土壤微生物细胞壁受损,土壤冻结使得土壤中溶质浓缩,土和水的势能发生改变,导致土壤微生物细胞壁内外渗透压发生变化。马晓飞等[10]研究表明,随着季节性冻融期土壤温度降低,导致土壤中部分微生物死亡,土壤微生物数量下降,随着土壤温度的升高,土壤中微生物残体被幸存的微生物所利用,土壤微生物数量再次增加。此外,冻融作用还影响着土壤微生物的群落结构,刘利等[11]研究发现,在季节性冻融期,土壤冻结使得细菌类微生物群落和多样性明显下降。但是Sulkava等[12]发现土壤微生物在冻结期,仍有较高的活性。【本研究切入点】虽然有研究表明季节性冻融对土壤微生物影响显著,但是研究程度和结论尚不相同。土壤微生物作为调控土壤肥力和营养物质循环的重要参与者,尤其是季节性冻融期土壤微生物的变化直接影响来年春播农田土壤微环境,所以有必要研究季节性冻融期土壤微生物数量的影响因素。【拟解决的关键问题】采集中国知网、Web of science等数据库相关土壤季节性冻融期的数据,文献采用meta综合分析,探讨季节性冻融期土壤微生物细菌与真菌数量的影响因素,并为开展相关研究提供参考。

1" 材料与方法

1.1" 材 料

1.1.1" 数据库选择

2022年采集中国知网(http://www.cnki.net)、Web of science 等数据库进行以下关键词的检索:“季节性冻融and土壤微生物”、“冻土and土壤微生物”和“seasonal freeze-thaw and soil microbe”,文献筛选:①试验选地符合季节性冻融条件;②季节性冻融的3个重要时期(冻结初期、稳定冻结期、融化期);③季节性冻融期土壤理化性质和微生物变化的描述;④土壤各因素对土壤微生物的影响;⑤数据及图表分析。

选择土壤理化性质:土壤温度、pH值、含水量、有机质、有机氮、全氮(有机氮和无机氮)分析对土壤微生物数量的影响,将筛选的文献根据影响因素进行归类。

1.1.2" 文献检索数据筛选与获取

研究表明,在知网等数据库输入关键词共检索出252篇文献,通过阅读题目、摘要、试验方法等,排除题目与研究明显不相关的文献,初次纳入69篇文献,其中10篇英文文献,59篇中文文献,根据(NOS)文献质量评价表得分和文献内容最后确定纳入42篇[13-14]文献进行土壤微生物数量影响因素研究。图1

1.2" 方 法

Meta分析方法[15]:

OR表示优势比、RR表示风险比、RD表示风险差、SE(logOR)SE(logRR)SE(RR)表示标准错误、95%CI表示置信区间,P表示显著性。

对于logRR=0,logOR=0,RD=0的z检验计算公式为:

z=log(OR)SE(logOR)z=log(RR)SE(logRR)z=log(RD)SE(RD).(1)

如果已知P值,

z=Q(1-P2).(2)

对于95%CI,

logOR±Q(1+952)SE(logOR).(3)

logRR±Q(1+952)SE(logRR).(4)

RD±Q(1+952)SE(RD). (5)

式中,OR和RR的95%CI通过前两个区间的上、下界的指数计算。

1.3" 数据整理

根据纳入的每一篇文献分别来提取材料与方法中的试验组和对照组的数量以及样本数量,使用Review Manager 5.4进行Meta分析。采用Cochrane Q检验来分析各研究间的异质性,采用I2来评价纳入研究间的异质性的大小。当Pgt;0.1且I2lt;50%时,采用FE模型;当Plt;0.1且I2gt;50%时采用RE模型[16]。用漏斗图判断是否存在发表偏倚。

2" 结果与分析

2.1" 土壤类型文献及集中年限

研究表明,在入选的42篇文献中,研究地区主要集中在新疆、甘肃、黑龙江等地,研究土壤类型主要是农田、林地、草地和高原区的土壤,发表年限主要集中在2011~2022年。对于季节性冻融期土壤微生物的影响因素研究,均涉及到土壤温度、pH值、含水量、有机质、有机氮、全氮。表1

2.2" 高质量文献筛选与评价

研究表明,依据Newcastle-Ottawa Scale (NOS)文献质量评价表纳入42篇文献中SCI论文7篇,CSCD文章27篇,研究生论文7篇,这些期刊多年刊登关于冻土和土壤微生物的文献,每篇文献得分都≥6分,属于高质量文献。图2,图3

2.3" Meta统计

2.3.1 季节性冻融期土壤细菌、真菌数量影响因素Meta统计

研究表明,6种影响因素的Pgt;0.1且I2lt;50%,均不具有异质性,采用固定分析模式。季节性冻融期土壤温度、pH值、含水量、有机质、有机氮、全氮对细菌和真菌均有一定的影响。季节性冻融期影响土壤细菌最主要的因素是土壤温度、土壤pH值、土壤含水量、土壤有机氮,而土壤含水量和土壤pH值对土壤细菌的影响最为显著(P<0.00001),土壤含水量是最主要的影响因素(Z=5.31);季节性冻融期影响土壤真菌的主要因素是土壤温度、土壤含水量和土壤pH值,而土壤pH值对土壤真菌的影响最为显著(P=0.000 2)。季节性冻融期土壤理化性质的变化对土壤细菌的影响最为突出,有机质对土壤细菌和真菌的影响显著相相当。图4~9,表2

2.3.2" 对土壤细菌和真菌的影响综合分析

研究表明,发现季节性冻融期,土壤中细菌和真菌的数量显著降低,冻融作用对土壤真菌的变化影响最为显著,土壤细菌和真菌与土壤pH值呈显著负相关,与总氮和有机氮呈显著正相关。季节性冻融初期,土壤细菌和真菌的数量随着土壤有机质的增多而增多,土壤真菌的数量随土壤含水量的增加明显增加。稳定冻结期,土壤细菌和真菌的数量明显下降,主要受到低温胁迫,其他因素对其几乎无影响。融化期,土壤真菌主要受到土壤含水量的影响,呈极显著相关性,而各影响因素对土壤细菌的影响较不明显,呈现弱正相关或弱负相关。Z值越大,影响因素的显著性越大,土壤温度、pH值、含水量、有机质、有机氮、全氮对土壤细菌的影响显著性大小为土壤含水量gt;土壤pH值gt;土壤有机氮gt;土壤温度gt;土壤全氮gt;土壤有机质,对于土壤真菌的影响显著大小为土壤pH值gt;土壤含水量gt;土壤温度gt;土壤全氮=土壤有机氮gt;土壤有机质。土壤温度、pH值、含水量、有机质、有机氮、全氮对土壤细菌的影响相比土壤真菌更为显著,土壤有机质对土壤细菌和真菌的影响显著性相对较弱,土壤有机氮和土壤全氮对土壤真菌的影响显著性几乎相同,季节性冻融期,对于土壤细菌和真菌起决定性因素的是土壤pH值和土壤含水量。土壤温度、pH值、含水量、有机质、有机氮、全氮对土壤细菌的影响优势比大小为土壤有机氮gt;土壤含水量gt;土壤pH值gt;土壤温度gt;土壤全氮gt;土壤有机质;对于土壤真菌的影响优势比大小为土壤含水量gt;土壤pH值gt;土壤有机氮gt;土壤温度gt;土壤有机质gt;土壤全氮。图10~11

2.3.3" 各影响因素Meta分析的偏倚性统计

研究表明,各因素漏斗图基本对称,均分布在95%CI周围,分析结果相对稳定。图12

3" 讨 论

3.1" 土壤微生物数量影响因素土壤pH值

研究通过输入关键词和精读筛选,共纳入42篇季节性冻融期不同时期对照的文献,同时应用Meta分析中固定模型和随机模型进行敏感性分析[15],目前,更多的研究是通过试验分析季节性冻融期土壤微生物数量影响因素。每年频繁发生的土壤冻融都会导致土壤pH值的季节性振荡[57],土壤pH值的不同对土壤微生物的影响不同[58]。土壤pH值过高会改变土壤微生物细胞膜所带电荷,改变土壤微生物对影响物质的吸收状况,不利于土壤微生物的生存[59],季节性冻融前期土壤pH值与土壤细菌和真菌数量呈弱的显著正相关(R=0.242),后期呈弱的显著负相关(R=-0.261),季节性冻融期土壤pH值对土壤细菌和真菌数量有影响[16],土壤中微生物的数量与土壤pH值无显著相关性[40]。关于土壤pH值是否对土壤微生物有影响还存在争议。通过Meta分析表明季节性冻融期土壤pH值对土壤细菌和真菌具有极显著的影响,并且土壤pH值对土壤细菌和真菌的影响具有决定性因素。

3.2" 土壤微生物数量影响因素—土壤含水量

全球气候变化导致季节性冻融期土壤冻融格局发生了很多变化[60],这些变化直接影响到土壤湿度,导致土壤微生物结构发生改变[25]。土壤湿度的降低会对土壤微生物产生剧烈的影响[25],土壤细菌和真菌与外界的交流和活动离不开水分,冻结期,土壤自上而下冻结,土壤水分向上迁移,形成厌氧环境,对土壤细菌和真菌造成不利的影响,使得土壤细菌和真菌数量下降,一直到稳定冻结期,部分厌氧微生物存活稳定[61],土壤微生物总数量稳定,融化期,由于积雪的覆盖,土壤含水量增加,导致土壤孔隙度相对变大,有利于土壤细菌和真菌的生存繁殖,土壤微生物总数量再次上升。研究通过Meta分析表明在季节性冻融期,土壤含水量对土壤细菌和真菌具有极显著的影响,与前人[62]的研究观点一致。

3.3" 土壤微生物数量影响因素—土壤温度

季节性冻融期,虽然土壤温度长期处于低温,低营养的状态下,但是还是有很多土壤微生物顽强的生存着。低温的胁迫导致土壤微生物细胞内的水分转到细胞外以防止自身冻结,但是超过临界点后,土壤微生物会将所有的水分全部析出[63]。在低温条件下,土壤微生物浓缩,维持着原有的生理生存条件,使得土壤微生物数量有所下降,低温可以直接杀死土壤微生物[64],温度升高后,由于土壤可利用水分和土壤孔隙度的增加,土壤微生物修复损伤的细胞开始分散[65],土壤微生物数量再次增加,所以在稳定冻结期,土壤微生物数量降低,到了融化期,土壤微生物数量再次上升。多年冻融循环只会导致土壤微生物的数量急剧下降。试验通过Meta分析表明,季节性冻融期,土壤温度的变化对土壤细菌和真菌具有显著的影响。

3.4" 土壤微生物数量影响因素—土壤有机质

马晓飞等[15]研究发现季节性冻融期,土壤有机质呈先降低再升高最后又显著降低的趋势。土壤微生物的活动有利于土壤有机质的分解,土壤有机质的含量也直接影响到土壤细菌和真菌的数量。土壤有机质可以刺激土壤微生物的活动来增加土壤酶的活性[66],土壤有机质是土壤微生物生存和活动的主要营养和能量来源,所以土壤有机质是影响土壤微生物的重要因素之一,研究通过Meta分析表明,季节性冻融期土壤有机质对土壤细菌和真菌具有显著的影响。

3.5" 土壤微生物数量影响因素—土壤氮

季节性冻融期是土壤最重要的物理过程变化时期,是全球高纬度地区普遍存在的自然变化现象[38]。季节性冻融期改变了土壤结构、破坏了土壤表层的微生物及凋亡的植物、落叶和动物残体,促进了土壤养分的释放[67],是影响土壤氮素等最重要的化学过程,土壤氮素的变化影响土壤细菌和真菌的生存,是反应土壤微生物量的重要指标[68]。季节性冻融期。死去的土壤微生物可以为土壤提供一部分氮素,有利于来年作物的生长,另一部分则被幸存的土壤微生物所利用。季节性冻融期土壤氮素和土壤微生物是相互影响的。研究通过Meta分析表明,季节性冻融期土壤有机氮和全氮对土壤细菌和真菌具有显著的影响。

3.6" 土壤微生物数量影响因素—其他因素

菜园土研究发现,盐碱地土壤过氧化氢酶活性的升高,会导致脲酶活性下降[69],而Sudipta T A等[70]研究发现土壤含盐量会降低土壤微生物的数量,间接影响到土壤酶的活性和数量。王飞[71]研究表明随着土壤盐分浓度的增加土壤微生物的数量减少。盐分的影响微生物的群落,但是微生物中存在嗜盐微生物,所以盐分对微生物的影响不明确。目前关于不同梯度下盐分对土壤微生物活性的影响以及土壤盐分浓度对土壤微生物影响的临界点的研究报道过少,季节性冻融期关于土壤盐分对土壤微生物数量的鲜有研究报道,土壤微生物对盐碱化土壤的理化性质有着高度的响应特征。

4" 结 论

4.1

季节性冻融期对土壤细菌的影响显著性大小为土壤含水量gt;土壤pH值gt;土壤土壤有机氮gt;土壤温度gt;土壤全氮gt;土壤有机质;对土壤真菌的影响显著性大小为土壤pH值gt;土壤含水量gt;土壤温度gt;土壤全氮=土壤有机氮gt;土壤有机质。

4.2" 在季节性冻融期,对土壤细菌影响的优势程度为土壤有机氮gt;土壤含水量gt;土壤pH值gt;土壤温度gt;土壤全氮gt;土壤有机质,对土壤真菌影响的优势程度为土壤含水量gt;土壤pH值gt;土壤有机氮gt;土壤温度gt;土壤有机质gt;土壤全氮。

参考文献(References)

[1]

Ji X M, Liu M H, Yang J L, et al. Meta-analysis of the impact of freeze–thaw cycles on soil microbial diversity and C and N dynamics[J]. Soil Biology and Biochemistry,2022.

[2] Kennedy A C, Smith K L. Soil microbial diversity and the sustainability of agricultural soils[J]. Plant and Soil, 1995, 170(1): 75-86.

[3] 方圆, 王娓, 姚晓东, 等. 我国北方温带草地土壤微生物群落组成及其环境影响因素[J]. 北京大学学报(自然科学版), 2017, 53(1): 142-150.

FANG Yuan, WANG Wei, YAO Xiaodong, et al. Soil microbial community composition and environmental controls in northern temperate steppe of China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(1): 142-150.

[4] 蒋双龙, 胡玉福, 蒲琴, 等. 川西北高寒草地沙化过程中土壤氮素变化特征[J]. 生态学报, 2016, 36(15): 4644-4653.

JIANG Shuanglong, HU Yufu, PU Qin, et al. Changes in soil nitrogen characteristics during grassland desertification in Northwest Sichuan[J]. Acta Ecologica Sinica, 2016, 36(15): 4644-4653.

[5] Brooks P D, Grogan P, Templer P H, et al. Carbon and nitrogen cycling in snow-covered environments[J]. Geography Compass, 2011, 5(9): 682-699.

[6] Campbell J L, Ollinger S V, Flerchinger G N, et al. Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA[J]. Hydrological Processes, 2010, 24(17): 2465-2480.

[7] Muller S W. Permafrost; or, Permanently frozen ground and related engineering problems" [M]. Ann Arbor: J. W. Edwards, 1947

[8] 韩露, 万忠梅, 孙赫阳. 冻融作用对土壤物理、化学和生物学性质影响的研究进展[J]. 土壤通报, 2018, 49(3): 736-742.

HAN Lu, WAN Zhongmei, SUN Heyang. Research progress on the effects of freezing and thawing on soil physical, chemical and biological properties[J]. Chinese Journal of Soil Science, 2018, 49(3): 736-742.

[9] Finegold L. Molecular and biophysical aspects of adaptation of life to temperatures below the freezing point[J]. Advances in Space Research, 1996, 18(12): 87-95.

[10] 马晓飞, 楚新正, 马倩. 艾比湖地区融雪期梭梭和柽柳林地土壤酶活性研究[J]. 中国农学通报, 2016, 32(14): 138-145.

MA Xiaofei, CHU Xinzheng, MA Qian. Soil enzyme activity of Haloxylon ammondendron and Tamarix chinensis forest land in ebinur lake region during snow melting period[J]. Chinese Agricultural Science Bulletin, 2016, 32(14): 138-145.

[11] 刘利. 季节性冻融对亚高山/高山森林土壤微生物多样性的影响[D]. 雅安: 四川农业大学, 2010.

LIU Li. Soil Bacterial Diversity in the Subalpine/Alpine Forests of Western Sichuan Affected by Seasonal Freeze-thaw Cycles[D]. Yaan: Sichuan Agricultural University, 2010.

[12]""" Sulkava P, Huhta V. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil [J]. Applied Soil Ecology, 2003, 22(3): 225-239

[13] Hedges L V, Gurevitch J, Curtis P S. The meta-analysis of response ratios in experimental ecology[J]. Ecology," 1999, 80(4): 1150.

[14] 秦璐, 吕光辉, 何学敏. 艾比湖地区冻融作用对土壤微生物数量和群落结构的影响[J]. 冰川冻土, 2013, 35(6): 1590-1599.

QIN Lu, LYU Guanghui, HE Xuemin. Effects of freezing-thawing on soil microbial quantity and community structure around the ebinur lake[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1590-1599.

[15] Greenland S. Quantitative methods in the review of epidemiologic literature[J]. Epidemiologic Reviews, 1987, 9: 1-30.

[16] 马晓飞, 楚新正, 马倩. 艾比湖地区冻融作用对梭梭群落土壤酶活性及微生物数量的影响[J]. 干旱区地理, 2015, 38(6): 1190-1201.

MA Xiaofei, CHU Xinzheng, MA Qian. Soil enzyme activity and microbial biomass of Haloxylon ammodendron community under freeze-thaw action[J]. Arid Land Geography, 2015, 38(6): 1190-1201.

[17] 杨晓. 北极新奥尔松地区土壤微生物多样性初步分析[D]. 青岛: 青岛大学, 2016.

YANG Xiao. Preliminary Analysis of Soil Microbial Diversity in Ny-Alesund, Arctic[D]. Qingdao: Qingdao University, 2016.

[18] 王鹭, 董小培, 张威, 等. 不同深度冻土微生物数量特征及其与土壤理化性质的关系[J]. 冰川冻土, 2011, 33(2): 436-441.

WANG Lu, DONG Xiaopei, ZHANG Wei, et al. Quantitative characters of microorganisms in permafrost at different depths and their relation to soil physicochemical properties[J]. Journal of Glaciology and Geocryology," 2011, 33(2): 436-441.

[19] 伍文宪, 张蕾, 黄小琴, 等. 川西北高寒牧区不同人工草地对土壤微生物多样性影响[J]. 草业学报, 2019, 28(3): 29-41.

WU Wenxian, ZHANG Lei, HUANG Xiaoqin, et al. Difference in soil microbial diversity in artificial grasslands of the Northwest Plateau of Sichuan Province[J]. Acta Prataculturae Sinica, 2019, 28(3): 29-41.

[20] 王楠, 王传宽, 邸雪颖, 等. 春季冻融期兴安落叶松林土壤微生物的时间动态及其影响因子[J]. 应用生态学报, 2019, 30(8): 2757-2766.

WANG Nan, WANG Chuankuan, DI Xueying, et al. Temporal dynamics and influencing factors of soil microbes in Larix gmelinii forest soil during spring freezing-thawing period[J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2757-2766.

[21] 余炎炎, 李梦莎, 刘啸林, 等. 大兴安岭典型永久冻土土壤细菌群落组成和多样性[J]. 微生物学通报, 2020, 47(9): 2759-2770.

YU Yanyan, LI Mengsha, LIU Xiaolin, et al. Soil bacterial community composition and diversity of typical permafrost in Greater Khingan Mountains[J]. Microbiology China, 2020, 47(9): 2759-2770.

[22] 孙弘哲, 马大龙, 臧淑英, 等. 大兴安岭多年冻土区不同林型土壤微生物群落特征[J]. 冰川冻土, 2018, 40(5): 1028-1036.

SUN Hongzhe, MA Dalong, ZANG Shuying, et al. Characteristics of soil microbial community structure under different forest types of permafrost regions in the Greater Khingan Mountains[J]. Journal of Glaciology and Geocryology, 2018, 40(5): 1028-1036.

[23] 车子涵, 陈克龙, 杜岩功, 等. 冻融凹陷对瓦颜山河源湿地土壤微生物群落结构的影响[J]. 基因组学与应用生物学, 2023, 42(2): 204-216.

CHE Zihan, CHEN Kelong, DU Yangong, et al. Effect of freeze-thaw depression on soil microbial community structure in wayanshan Heyuan wetland[J]. Genomics and Applied Biology, 2023, 42(2): 204-216.

[24] 段亚楠, 刘恩太, 陈学森, 等. 冻融对老龄苹果园土壤微生物数量及酶活性的影响[J]. 土壤, 2021, 53(1): 125-132.

DUAN Yanan, LIU Entai, CHEN Xuesen, et al. Effects of freezing-thawing on soil microbial quantities and enzymatic activities of old apple orchards[J]. Soils, 2021, 53(1): 125-132.

[25] 陈末, 朱新萍, 蒋靖佰伦, 等. 冻融期巴音布鲁克高寒湿地土壤细菌群落变化及其响应机制[J]. 农业环境科学学报, 2020, 39(1): 134-142.

CHEN Mo, ZHU Xinping, JIANG Jingbailun, et al. Shifts in soil bacterial community and their response mechanism during freeze-thaw period in Bayinbuluk alpine wetland[J]. Journal of Agro-Environment Science, 2020, 39(1): 134-142.

[26] 林尤伟, 金光泽. 冻融期去根处理对小兴安岭6种林型土壤微生物量的影响[J]. 生态学报, 2016, 36(19): 6159-6169.

LIN Youwei, JIN Guangze. Effects of root resectioning on soil microbial biomass in six forest types in the Xiaoxingan Mountains during freezing-thawing cycles[J]. Acta Ecologica Sinica, 2016, 36(19): 6159-6169.

[27] 张宝贵, 张威, 刘光琇, 等. 冻融循环对青藏高原腹地不同生态系统土壤细菌群落结构的影响[J]. 冰川冻土, 2012, 34(6): 1499-1507.

ZHANG Baogui, ZHANG Wei, LIU Guangxiu, et al. Effect of freeze-thaw cycles on the soil bacterial communities in different ecosystem soils in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1499-1507.

[28] 李君锋, 杨建文, 杨婷婷, 等. 甘肃玛曲高寒草甸土壤微生物季节变化特性的研究[J]. 草业科学, 2012, 29(2): 189-197.

LI Junfeng, YANG Jianwen, YANG Tingting, et al. Seasonal dynamics of soil microbes and their relationship with soil physicochemical factors in alpine meadow in Maqu of Gansu[J]. Pratacultural Science, 2012, 29(2): 189-197.

[29] 关健飞, 曹阳. 黑龙江省表层冻土细菌群落结构组成和功能特征[J]. 生态学报, 2020, 40(14): 4929-4941.

GUAN Jianfei, CAO Yang. Bacterial community structure analysis of surface frozen soil in Heilongjiang Province[J]. Acta Ecologica Sinica, 2020, 40(14): 4929-4941.

[30] 马大龙, 刘梦洋, 陈泓硕, 等. 积雪覆盖变化对大兴安岭多年冻土区土壤微生物群落结构的影响[J]. 生态学报, 2020, 40(3): 789-799.

MA Dalong, LIU Mengyang, CHEN Hongshuo, et al. Effects of snow cover change on soil microbial community structure in permafrost region of Great Hingan Mountains[J]. Acta Ecologica Sinica, 2020, 40(3): 789-799.

[31] 陈泓硕, 马大龙, 姜雪薇, 等. 季节性冻融对扎龙湿地土壤微生物群落结构和胞外酶活性的影响[J]. 环境科学学报, 2020, 40(4): 1443-1451.

CHEN Hongshuo, MA Dalong, JIANG Xuewei, et al. Effects of seasonal freeze-thaw on soil microbial community structures and extracellular enzyme activities in Zhalong wetland[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1443-1451.

[32] 李昌明, 张新芳, 赵林, 等. 青藏高原多年冻土区土壤需氧可培养细菌多样性及群落功能研究[J]. 冰川冻土, 2012, 34(3): 713-725.

LI Changming, ZHANG Xinfang, ZHAO Lin, et al. Phylogenetic diversity of bacteria isolates and community function in permafrost-affected soil along different vegetation types in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 713-725.

[33] 张宝贵, 刘晓娇, 吴青柏, 等. 青藏高原昆仑山垭口不同深度土壤可培养细菌群落特征研究[J]. 冰川冻土, 2016, 38(3): 776-784.

ZHANG Baogui, LIU Xiaojiao, WU Qingbai, et al. Research of the soil bacteria community characteristics at different depths in Kunlun Mountains Pass, Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2016, 38(3): 776-784.

[34] 董康, 李师翁, 康文龙, 等. 青藏公路沿线土壤微生物数量变化及其影响因素研究[J]. 冰川冻土, 2013, 35(2): 457-464.

DONG Kang, LI Shiweng, KANG Wenlong, et al. Study of the changes in microbe amount and its affect factors in the soils along the qinghai-tibet highway[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 457-464.

[35] 张宝贵, 刘晓娇, 刘敏, 等. 疏勒河上游不同退化类型冻土可培养细菌数量变化[J]. 生态学杂志, 2017, 36(10): 2886-2893.

ZHANG Baogui, LIU Xiaojiao, LIU Min, et al. Change of culturable bacterial quantity in different types of degraded permafrost in the upstream region of Shule River Basin[J]. Chinese Journal of Ecology, 2017, 36(10): 2886-2893.

[36] Song D D, Cui Y Q, Ma D L, et al. Spatial variation of microbial community structure and its driving environmental factors in two forest types in permafrost region of greater Xingan Mountains[J]. Sustainability, 2022, 14(15): 9284.

[37] 胡霞, 尹鹏, 彭言劼, 等. 冻融交替下高山土壤微生物和矿质氮库对外源氮输入的响应[J]. 重庆师范大学学报(自然科学版), 2021, 38(4): 121-128.

HU Xia, YIN Peng, PENG Yanjie, et al. Response of mineral nitrogen pool and microorganism to external nitrogen input in alpine soil under freeze-thaw alternation[J]. Journal of Chongqing Normal University (Natural Science), 2021, 38(4): 121-128.

[38] 孙嘉鸿, 郭彤, 董彦民, 等. 冻融循环对金川泥炭沼泽土壤微生物量及群落结构的影响[J]. 生态学报, 2022, 42(7): 2763-2773.

SUN Jiahong, GUO Tong, DONG Yanmin, et al. Effect of freezing and thawing on soil microbial biomass and community structure in Jinchuan peatlands[J]. Acta Ecologica Sinica," 2022, 42(7): 2763-2773.

[39] 张超凡, 盛连喜, 宫超, 等. 冻融作用对我国东北湿地土壤碳排放与土壤微生物的影响[J]. 生态学杂志, 2018, 37(2): 304-311.

ZHANG Chaofan, SHENG Lianxi, GONG Chao, et al. Effects of freeze-thaw cycles on soil microbial biomass carbon and carbon emissions from wetland soils, Northeast China[J]. Chinese Journal of Ecology, 2018, 37(2): 304-311.

[40] 薛烨飞. 季节性冻融对农业排水渠湿地植物根系周围底泥环境及微生物的影响[D]. 长春: 东北师范大学, 2021.

XUE Yefei. Effects of seasonal freeze-thaw on the sediment environment and microbial communities around the roots of wetland plants in an agricultural drainage ditch[D]. Changchun: Northeast Normal University, 2021.

[41] 王奥. 季节性冻融对高山森林土壤微生物与生化特性的影响[D]. 雅安: 四川农业大学, 2012.

WANG Ao. Effect of Seasonal Freeze-thaw on Soil Microbial and Biochemical Property in Alpine Forest Soil[D]. Yaan: Sichuan Agricultural University, 2012.

[42] 李淼, 冯海艳, 杨忠芳, 等. 中国典型冻土区土壤可培养细菌多样性[J]. 微生物学报, 2011, 51(12): 1595-1604.

LI Miao, FENG Haiyan, YANG Zhongfang, et al. Diversity of culturable bacteria in the typical frozen soil areas in China[J]. Acta Microbiologica Sinica, 2011, 51(12): 1595-1604.

[43] 姜霁珊. 长白山土壤微生物对土壤基本理化性质的响应研究——冻融期不同林型[D]. 延吉: 延边大学, 2019.

JIANG Jishan. Response Study of Soil Microorganisms to Soil Basic Physical and Chemical Properties in Changbai Mountain[D]. Yanji: Yanbian University, 2019.

[44] 刘超, 王宪伟, 宋艳宇, 等. 增温对冻土区泥炭沼泽土壤孔隙水甲烷关联微生物和溶解性有机碳的影响[J]. 生态学报, 2021, 41(1): 184-193.

LIU Chao, WANG Xianwei, SONG Yanyu, et al. Effects of warming on abundances of methane-related microorganisms and concentration of dissolved organic carbon in soil pore water of permafrost peat swamp in Daxinganling[J]." Acta Ecologica Sinica," 2021, 41(1): 184-193.

[45] 王艳发, 魏士平, 崔鸿鹏, 等. 祁连山冻土区土壤活动层与冻土层中甲烷代谢微生物群落结构特征[J]. 应用与环境生物学报, 2016, 22(4): 592-598.

WANG Yanfa, WEI Shiping, CUI Hongpeng, et al. Methane metabolic microbial community structure in the active layer and the permafrost layer of the Qilian permafrost, China[J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(4): 592-598.

[46] 孙秦川. 青藏高原冻土区石油污染对土壤微生物多样性的影响研究[D]. 兰州: 兰州交通大学, 2017.

SUN Qinchuan. Effects of Oil Pollution on Soil Microbial Diversity in the Qinghai-tibet Plateau Permafrost Regions[D]. Lanzhou: Lanzhou Jiatong University, 2017.

[47] 吴明辉, 瞿德业, 李婷, 等. 祁连山疏勒河源区冻土退化对土壤微生物生物量碳氮的影响[J]. 地理科学, 2021, 41(1): 177-186.

WU Minghui, QU Deye, LI Ting, et al. Effects of permafrost degradation on soil microbial biomass carbon and nitrogen in the Shule River headwaters, the Qilian Mountains[J]. Scientia Geographica Sinica," 2021, 41(1): 177-186.

[48] 胡维刚. 昆仑山垭口深层多年冻土微生物多样性及构建机制研究[D]. 兰州: 兰州大学, 2016.

HU Weigang. Microbial Diversity And Community Assembly in Permafrost Soils from The Kunlun Mountain Pass[D]. Lanzhou: Lanzhou University, 2016.

[49] 谭波, 吴福忠, 秦嘉励, 等. 川西亚高山、高山森林土壤微生物生物量和酶活性动态特征[J]. 生态环境学报, 2014, 23(8): 1265-1271.

TAN Bo, WU Fuzhong, QIN Jiali, et al. Dynamics of soil microbial biomass and enzyme activity in the subalpine/alpine forests of western Sichuan[J]. Ecology and Environmental Sciences, 2014, 23(8): 1265-1271.

[50] 谭波. 长江上游不同海拔代表性森林土壤动物对凋落叶分解的影响[D]. 雅安: 四川农业大学, 2013.

TAN Bo. Effects of Soil Fauna on Forest Litter Decomposition in the Upper Reaches of the Yangtze River[D]. Yaan: Sichuan Agricultural University, 2013.

[51] Sorensen P O, Finzi A C, Giasson M A, et al. Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming[J]. Soil Biology and Biochemistry," 2018, 116: 39-47.

[52] Grant J, Konrad K, Fereidoun R, et al. Microbial community compositional stability in agricultural soils during freeze-thaw and fertilizer stress[J]. Frontiers in Environmental Science, 2022, 10.

[53] Meisner Annelein, Basten L, Snoek, et al. Soil microbial legacies differ following drying rewetting and freezing-thawing cycles[J]. The ISME Journal, 2021, 15(4): 1207-1221.

[54] Tsunehiro Watanabe, Ryunosuke Tateno, Shogo Imada, et al. The effect of a freeze-thaw cycle on dissolved nitrogen dynamics and its relation to dissolved organic matter and soil microbial biomass in the soil of a northern hardwood forest[J]. Biogeochemistry, 2019, 142(3): 319-338.

[55] Hu X, Yin P, Nong X, et al. Effect of exogenous carbon addition and the freeze-thaw cycle on soil microbes and mineral nitrogen pools1[J]. IOP Conference Series: Earth and Environmental Science, 2018, 108: 032046.

[56] Wu H, Dannenmann M, Wolf B, et al. Seasonality of soil microbial nitrogen turnover in continental steppe soils of Inner Mongolia[J]. Ecosphere, 2012, 3(4): 1-18.

[57] Gilichinsky D A. Permafrost model of extraterrestrial habitat[M]. Horneck G, Baumstark-Khan C. Astrobiology. Berlin, Heidelberg: Springer, 2002: 125-142.

[58] 周璟, 盛红梅, 安黎哲. 极端微生物的多样性及应用[J]. 冰川冻土, 2007, 29(2): 286-291.

ZHOU Jing, SHENG Hongmei, AN Lizhe. Diversity of extremophilic miroorganisms and their applications[J]. Journal of Glaciology and Geocryology, 2007, 29(2): 286-291.

[59] 杨思忠, 金会军, 魏智, 等. 微生物对冻土生境的适应以及对全球变化和寒区工程扰动的响应: 进展与展望[J]. 冰川冻土, 2007, 29(2): 279-285.

YANG Sizhong, JIN Huijun, WEI Zhi, et al. Microbial adaptation to the habitat of permafrost and their responses to global change and engineering disturbance in cold regions: advances and prospects[J]. Journal of Glaciology and Geocryology, 2007, 29(2): 279-285.

[60] Chu H Y, Fierer N, Lauber C L, et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes[J]. Environmental Microbiology, 2010, 12(11): 2998-3006.

[61] Larsen K S, Jonasson S, Michelsen A. Repeated freeze–thaw cycles and their effects on biological processes in two Arctic ecosystem types[J]. Applied Soil Ecology, 2002, 21(3): 187-195.

[62] 张立新, 韩文玉, 顾同欣. 冻融过程对景电灌区草窝滩盆地土壤水盐动态的影响[J]. 冰川冻土, 2003, 25(3): 297-302.

ZHANG Lixin, HAN Wenyu, GU Tongxin. The influence of freezing and thawing on the moisture-salt activity of soil in caowotan basin of jingdian irrigated area[J]. Journal of Glaciology and Geocryology," 2003, 25(3): 297-302.

[63] 杨思忠, 金会军. 冻融作用对冻土区微生物生理和生态的影响[J]. 生态学报, 2008, 28(10): 5065-5074.

YANG Sizhong, JIN Huijun. Physiological and ecological effects of freezing and thawing processes on microorganisms in seasonally-froze ground and in permafrost[J]. Acta Ecologica Sinica," 2008, 28(10): 5065-5074.

[64] Mazur P. Cryobiology: the freezing of biological systems[J]. Science, 1970, 168(3934): 939-949.

[65] 杨玉莲, 吴福忠, 何振华, 等. 雪被去除对川西高山冷杉林冬季土壤微生物生物量碳氮和可培养微生物数量的影响[J]. 应用生态学报, 2012, 23(7): 1809-1816.

YANG Yulian, WU Fuzhong, HE Zhenhua, et al. Effects of snow pack removal on soil microbial biomass carbon and nitrogen and the number of soil culturable microorganisms during wintertime in alpine Abies faxoniana forest of western Sichuan, Southwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1809-1816.

[66] Jiang L, Yue K, Yang Y. l.Leaching and freeze-thaw events contribute to litter decomposition a review[J]. Sains Malaysiana, 2016, 45(7): 1041-1047.

[67] Groffman P M, Drisoll C T. Effects of mild winter freezing on soil nitrmgen and carbon dynamics in a northern hardwood forest[J]. Biogeochemistry, 2001, 56(2): 191-213.

[68] 吴金水, 林启美, 黄巧云. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社, 2006.

WU Jinshui, LIN Qimei, HUANG Qiaoyun.. Determination method of soil microbial biomass and its application[M]. Beijing: China Meteorological Press, 2006.

[69] 康贻军, 胡健, 董必慧, 等. 滩涂盐碱土壤微生物生态特征的研究[J]. 农业环境科学学报, 2007, 26(S1): 181-183.

KANG Yijun, HU Jian, DONG Bihui, et al. Microbial characters of a Salina-alkali soil in coastal wetland[J]. Journal of Agro-Environment Science, 2007, 26(S1): 181-183.

[70] Tripathi S, Chakraborty A, Chakrabarti K, et al. Enzyme activities and microbial biomass in coastal soils of India[J]. Soil Biology and Biochemistry, 2007, 39(11): 2840-2848.

[71] 王飞. 盐分对土壤微生物多样性及土壤有机物转化的影响[D]. 石河子: 石河子大学, 2011.

WANG Fei. Study on Soil Microbial Molecular Diversity and Organic Matter Transformation under Soil Salinization Condition[D]. Shihezi: Shihezi University, 2011.

Meta-analysis of influencing factors on soil microbial population in seasonal freeze-thaw period

YANG Yuefa1, 2,WANG Chunxia1, 2,LIANG Fei3,LAN Mingju1

(1. College of Water Conservancy amp; Architectural Engineering, Shihezi University, Shihezi Xinjiang 832000, China; 2. Key Laboratory of Modern Water-Saving Irrigation of XPCC, Shihezi" Xinjiang 832000, China;3.ILi Normal University, Yining Xinjiang 835012, China )

Abstract:【Objective】 To investigate the factors influencing soil bacterial and fungal populations during the seasonal freeze-thaw period.

【Methods】" The experimental data of relevant soil seasonal freeze-thaw periods were collected through the databases of China Knowledge Network and Web of Science, and the quality of the extracted literature was evaluated according to the exclusion and inclusion criteria and using the Newcastle-Ottawa Scale (NOS) evaluation criteria, and those with scores ≥6 and high quality were included in the study, and RevMan 5.4 was used for Meta-analysis.

【Results】" The final 42 papers met the inclusion criteria, among which, 7 were SCI articles and 27 were CSCD articles.The analysis showed that soil water content had the most significant effect on soil bacteria during the seasonal freeze-thaw period; soil pH had the most significant effect on soil fungi, and soil organic matter had the least significant effect on soil bacteria and fungi.During the seasonal freeze-thaw period, soil organic nitrogen had the most dominant effect on soil bacteria soil water content had the most dominant effect on soil fungi.

【Conclusion】" Soil pH and soil water content play a decisive role in soil bacteria and fungi during the seasonal freeze-thaw period.

Key words:Meta-analysis; soil bacteria; soil fungus; seasonal freeze-thaw

Fund projects:Southern Xinjiang Key Industries Innovation Development Support Program(2021DB012,2022DB020); The National Natural Science Foundation of China Project (U1803244)

Correspondence author: WANG Chunxia(1979-), female, from Yuncheng, Shandong, professor, research direction: water-saving irrigation theory and technology,(E-mail)410443356@qq.com

标签:  土壤 

免责声明

本文来自网络,不代表本站立场。如有不愿意被转载的情况,请联系我们。